Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Oxid Med Cell Longev ; 2020: 9260748, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377313


Parkinson's disease (PD) patients can benefit from antioxidant supplementation, and new efficient antioxidants are needed. The aim of this study was to evaluate the protective effect of selected nitroxide-containing redox nanoparticles (NRNPs) in a cellular model of PD. Antioxidant properties of NRNPs were studied in cell-free systems by protection of dihydrorhodamine 123 against oxidation by 3-morpholino-sydnonimine and protection of fluorescein against bleaching by 2,2-azobis(2-amidinopropane) hydrochloride and sodium hypochlorite. Model blood-brain barrier penetration was studied using hCMEC/D3 cells. Human neuroblastoma SH-SY5Y cells, exposed to 6-hydroxydopamine (6-OHDA), were used as an in vitro model of PD. Cells were preexposed to NRNPs or free nitroxides (TEMPO or 4-amino-TEMPO) for 2 h and treated with 6-OHDA for 1 h and 24 h. The reactive oxygen species (ROS) level was estimated with dihydroethidine 123 and Fluorimetric Mitochondrial Superoxide Activity Assay Kit. Glutathione level (GSH) was measured with ortho-phtalaldehyde, ATP by luminometry, changes in mitochondrial membrane potential with JC-1, and mitochondrial mass with 10-Nonyl-Acridine Orange. NRNP1, TEMPO, and 4-amino-TEMPO (25-150 µM) protected SH-SY5Y cells from 6-OHDA-induced viability loss; the protection was much higher for NRNP1 than for free nitroxides. NRNP1 were better antioxidants in vitro and permeated better the model BBB than free nitroxides. Exposure to 6-OHDA decreased the GSH level after 1 h and increased it considerably after 24 h (apparently a compensatory overresponse); NRNPs and free nitroxides prevented this increase. NRNP1 and free nitroxides prevented the decrease in ATP level after 1 h and increased it after 24 h. 6-OHDA increased the intracellular ROS level and mitochondrial superoxide level. Studied antioxidants mostly decreased ROS and superoxide levels. 6-OHDA decreased the mitochondrial potential and mitochondrial mass; both effects were prevented by NRNP1 and nitroxides. These results suggest that the mitochondria are the main site of 6-OHDA-induced cellular damage and demonstrate a protective effect of NRNP1 in a cellular model of PD.

Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213847


The aim of this study was to characterize the interaction of chosen catechins ((+)-catechin, (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCG)) with human erythrocytes and their protective effects against oxidative damage of erythrocytes. Uptake of the catechins by erythrocytes was studied by fluorimetry, their interaction with erythrocyte membrane was probed by changes in erythrocyte osmotic fragility and in membrane fluidity evaluated with spin labels, while protection against oxidative damage was assessed by protection against hemolysis induced by permanganate and protection of erythrocyte membranes against lipid peroxidation and protein thiol group oxidation. Catechin uptake was similar for all the compounds studied. Accumulation of catechins in the erythrocyte membrane was demonstrated by the catechin-induced increase in osmotic resistance and rigidification of the erythrocyte membrane detected by spin labels 5-doxyl stearic acid and 16-doxyl stearic acid. (-)-Epigallocatechin and EGCG inhibited erythrocyte acetylcholinesterase (mixed-type inhibition). Catechins protected erythrocytes against permanganate-induced hemolysis, oxidation of erythrocyte protein thiol groups, as well as membrane lipid peroxidation. These results contribute to the knowledge of the beneficial effects of catechins present in plant-derived food and beverages.

Food Chem ; 278: 692-699, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583431


Studies of 54 antioxidants revealed that 27 of them, mainly polyphenols, generated hydrogen peroxide (H2O2) when added to Dulbecco's modified Eagle's medium (DMEM), other media used for culture of mammalian and yeast cells and phosphate-buffered saline. The most active antioxidants were: propyl gallate (PG), (-)-epigallocatechin gallate (EGCG) and quercetin (Q). Chelex treatment and iron chelators decreased H2O2 generation suggesting that transition metal ions catalyze antioxidant autoxidation and H2O2 production. Green tea also generated H2O2; tea prepared on tap water generated significantly more H2O2 than tea prepared on deionized water. Ascorbic acid decreased H2O2 production although it generated H2O2 itself, in the absence of other additives. Lemon added to the tea significantly reduced generation of H2O2. Hydrogen peroxide generated in the medium contributed to the cytotoxicity of PG, EGCG and Q to human prostate carcinoma DU-145 cells, since catalase increased the survival of the cells subjected to these compounds in vitro.

Antioxidantes/química , Peróxido de Hidrogênio/química , Catalase/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Polifenóis/química , Galato de Propila/química , Galato de Propila/farmacologia , Quercetina/química , Quercetina/farmacologia , Chá/química , Chá/metabolismo , Elementos de Transição/química
Free Radic Res ; 52(3): 335-338, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29092648


TEMPO-phosphate has been introduced as a phosphate analogue to study phosphate transport in erythrocytes. The nitroxide is reduced intracellularly upon entering the cells, the membrane transport being the rate-limiting step of the loss of ESR signal. The use of TEMPO-phosphate is convenient and avoids the hazard of radioactivity. We studied the inhibition of TEMPO-phosphate transport to human erythrocytes by various compounds. DIDS and SITS, inhibitors of Band 3, inhibited the TEMPO-phosphate transport. 1-cyano-4-hydroxycinnamic acid, inhibitor of monocarboxylate transporters, did not affect the permeation of TEMPO-phosphate. The transport of TEMPO-phosphate was inhibited by various polyphenols, especially curcumin, naringin, quercetin, luteolin and kaempferol. Interestingly, 3-bromopyruvic acid, an alkylating agent and potential anticancer agent, induced an apparent enhancement of TEMPO-phosphate transport into erythrocytes.

Transporte Biológico/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fosfatos/química , Humanos
Redox Biol ; 6: 93-99, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26202868


Ascorbic acid (AA) has been reported to be both pro-and antiglycating agent. In vitro, mainly proglycating effects of AA have been observed. We studied the glycation of bovine serum albumin (BSA) induced by AA in vitro. BSA glycation was accompanied by oxidative modifications, in agreement with the idea of glycoxidation. Glycation was inhibited by antioxidants including polyphenols and accelerated by 2,​2'-​azobis-​2-​methyl-​propanimidamide and superoxide dismutase. Nitroxides, known to oxidize AA, did not inhibit BSA glycation. A good correlation was observed between the steady-state level of the ascorbyl radical in BSA samples incubated with AA and additives and the extent of glycation. On this basis we propose that ascorbyl radical, in addition to further products of AA oxidation, may initiate protein glycation.

Ácido Ascórbico/química , Produtos Finais de Glicação Avançada/química , Soroalbumina Bovina/química , Amidinas/química , Animais , Antioxidantes/química , Bovinos , Quelantes/química , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Glicosilação , Oxidantes/química , Oxirredução , Polifenóis/química , Soluções , Espectrometria de Fluorescência , Superóxido Dismutase/química