Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(21): 9931-9946, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31638797

RESUMO

RORγt is an important nuclear receptor that regulates the production of several pro-inflammatory cytokines such as IL-17 and IL-22. As a result, RORγt has been identified as a potential target for the treatment of various immunological disorders such as psoriasis, psoriatic arthritis, and inflammatory bowel diseases. Structure and computer-assisted drug design led to the identification of a novel series of tricyclic RORγt inverse agonists with significantly improved in vitro activity in the reporter (Gal4) and human whole blood assays compared to our previous chemotype. Through careful structure activity relationship, several potent and selective RORγt inverse agonists have been identified. Pharmacokinetic studies allowed the identification of the lead molecule 32 with a low peak-to-trough ratio. This molecule showed excellent activity in an IL-2/IL-23-induced mouse pharmacodynamic study and demonstrated biologic-like efficacy in an IL-23-induced preclinical model of psoriasis.

2.
J Pharm Sci ; 107(1): 317-326, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107047

RESUMO

Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance.


Assuntos
Liberação Controlada de Fármacos/efeitos dos fármacos , Polímeros/química , Cristalização/métodos , Estabilidade de Medicamentos , Umidade , Interações Hidrofóbicas e Hidrofílicas , Polivinil/química , Pirrolidinas/química , Solubilidade , Ureia/análogos & derivados , Ureia/química , Valina/análogos & derivados , Valina/química , Água/química
3.
J Med Chem ; 60(12): 5193-5208, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28541707

RESUMO

PI3Kδ plays an important role controlling immune cell function and has therefore been identified as a potential target for the treatment of immunological disorders. This article highlights our work toward the identification of a potent, selective, and efficacious PI3Kδ inhibitor. Through careful SAR, the successful replacement of a polar pyrazole group by a simple chloro or trifluoromethyl group led to improved Caco-2 permeability, reduced Caco-2 efflux, reduced hERG PC activity, and increased selectivity profile while maintaining potency in the CD69 hWB assay. The optimization of the aryl substitution then identified a 4'-CN group that improved the human/rodent correlation in microsomal metabolic stability. Our lead molecule is very potent in PK/PD assays and highly efficacious in a mouse collagen-induced arthritis model.


Assuntos
Artrite Experimental/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Células CACO-2/efeitos dos fármacos , Células CACO-2/imunologia , Cães , Canal de Potássio ERG1/metabolismo , Inibidores Enzimáticos/química , Feminino , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Lectinas Tipo C/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Coelhos
4.
Bioorg Med Chem Lett ; 27(4): 855-861, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108251

RESUMO

As demonstrated in preclinical animal models, the disruption of PI3Kδ expression or its activity leads to a decrease in inflammatory and immune responses. Therefore, inhibition of PI3Kδ may provide an alternative treatment for autoimmune diseases, such as RA, SLE, and respiratory ailments. Herein, we disclose the identification of 7-(3-(piperazin-1-yl)phenyl)pyrrolo[2,1-f][1,2,4]triazin-4-amine derivatives as highly potent, selective and orally bioavailable PI3Kδ inhibitors. The lead compound demonstrated efficacy in an in vivo mouse KLH model.


Assuntos
Aminas/química , Inibidores de Proteínas Quinases/química , Aminas/metabolismo , Aminas/uso terapêutico , Animais , Doenças Autoimunes/tratamento farmacológico , Sítios de Ligação , Cristalografia por Raios X , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Piperazina , Piperazinas/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade , Triazinas/química
5.
Bioorg Med Chem Lett ; 26(17): 4256-60, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476421

RESUMO

Aberrant Class I PI3K signaling is a key factor contributing to many immunological disorders and cancers. We have identified 4-amino pyrrolotriazine as a novel chemotype that selectively inhibits PI3Kδ signaling despite not binding to the specificity pocket of PI3Kδ isoform. Structure activity relationship (SAR) led to the identification of compound 30 that demonstrated efficacy in mouse Keyhole Limpet Hemocyanin (KLH) and collagen induced arthritis (CIA) models.


Assuntos
Aminas/química , Inibidores de Proteínas Quinases/química , Triazinas/química , Aminas/metabolismo , Aminas/uso terapêutico , Animais , Artrite/tratamento farmacológico , Artrite/metabolismo , Artrite/patologia , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
6.
Pharm Res ; 33(10): 2445-58, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283830

RESUMO

PURPOSE: To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). METHODS: Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. RESULTS: In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems); while drug released much slower than the polymer when molecular level mixing or drug-polymer interaction was absent (SDD-PB systems). For ASDs without drug-polymer interaction (i.e., KTZ/HPMC systems), the mixing homogeneity had little impact on the release rate of either the drug or the polymer thus SDD and SDD-PB demonstrated the same drug or polymer release rate, while the drug released slowly and independently of polymer release. CONCLUSIONS: The initial drug release from an ASD was controlled by 1) the polymer release rate; 2) the strength of drug-polymer interaction, including the intrinsic interaction caused by the chemistry of the drug and the polymer (measured by the χ value), as well as that the apparent interaction caused by the drug-polymer ratio (measure by the extent of peak shift on spectroscopic analysis); and 3) the level of mixing homogeneity between the drug and polymer. In summary, the selection of polymer, drug-polymer ratio, and ASD processing conditions have profound impacts on the dissolution behavior of ASDs. Graphical Abstract Relationship between initial drug and polymer dissolution rates from amorphous solid dispersions with different mixing uniformity and drug-polymer interactions.


Assuntos
Liberação Controlada de Fármacos , Preparações Farmacêuticas/metabolismo , Polímeros/metabolismo , Interações de Medicamentos/fisiologia , Liberação Controlada de Fármacos/fisiologia , Preparações Farmacêuticas/química , Polímeros/química , Solubilidade , Difração de Raios X/métodos
7.
Mol Pharm ; 13(8): 2787-95, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27337060

RESUMO

Sodium lauryl sulfate (SLS), as an effective surfactant, is often used as a solubilizer and/or wetting agent in various dosage forms for the purpose of improving the solubility and dissolution of lipophilic, poorly water-soluble drugs. This study aims to understand the impact of SLS on the solution behavior and bioavailability of hypromellose acetate succinate (HPMC-AS)-based posaconazole (PSZ) ASDs, and to identify the underlying mechanisms governing the optimal oral bioavailability of ASDs when surfactants such as SLS are used in combination. Fluorescence spectroscopy and optical microscopy showed that "oil-out" or "liquid-liquid phase separation (LLPS)" occurred in the supersaturated PSZ solution once drug concentration surpassed ∼12 µg/mL, which caused the formation of drug-rich oily droplets with initial size of ∼300-400 nm. Although FT-IR study demonstrated the existence of specific interactions between PSZ and HPMC-AS in the solid state, predissolved HPMC-AS was unable to delay LLPS of the supersaturated PSZ solution and PSZ-rich amorphous precipitates with ∼16-18% HPMC-AS were formed within 10 min. The coprecipitated HPMC-AS was found to be able to significantly delay the crystallization of PSZ in the PSZ-rich amorphous phase from less than 10 min to more than 4 h, yet coexistent SLS was able to negate this crystallization inhibition effect of HPMC-AS in the PSZ-rich amorphous precipitates and cause fast PSZ crystallization within 30 min. 2D-NOESY and the CMC/CAC results demonstrated that SLS could assemble around HPMC-AS and competitively interact with HPMC-AS in the solution, thus prevent HPMC-AS from acting as an effective crystallization inhibitor. In a crossover dog PK study, this finding was found to be correlating well with the in vivo bioavailability of PSZ ASDs formulated with or without SLS. The SLS containing PSZ ASD formulation demonstrated an in vivo bioavailability ∼30% of that without SLS, despite the apparently better in vitro dissolution, which only compared the dissolved drug in solution, a small fraction of the total PSZ dose. We conclude that the bioavailability of ASDs is highly dependent on the molecular interactions between drug, surfactant, and polymer, not only in the solution phase but also in the drug-rich "oily" phase caused by supersaturation.


Assuntos
Derivados da Hipromelose/química , Dodecilsulfato de Sódio/química , Triazóis/química , Liberação Controlada de Fármacos , Espectroscopia de Ressonância Magnética , Soluções Farmacêuticas/química , Solubilidade , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Pharm Sci ; 105(4): 1478-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921118

RESUMO

BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl.


Assuntos
Imidazóis/química , Sulfonas/química , Cápsulas , Desidratação , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Comprimidos
9.
Bioanalysis ; 8(4): 265-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26807991

RESUMO

BACKGROUND: A target protein-based affinity extraction LC-MS/MS method was developed to enable plasma level determination following ultralow dosing (0.1-3 µg/kg) of an inhibitor of apoptosis proteins molecule. Methodology & results: Affinity extraction (AE) utilizing immobilized target protein BIR2/BIR3 was used to selectively capture the inhibitor of apoptosis proteins molecule from dog plasma and enable removal of background matrix components. Pretreatment of plasma samples using protein precipitation was found to provide an additional sensitivity gain. A LLOQ of 7.8 pM was achieved by combining protein precipitation with AE. The method was used to support an ultralow dose dog toxicity study. CONCLUSION: AE-LC-MS/MS, utilizing target protein, is a highly sensitive methodology for small molecule quantification with potential for broader applicability.


Assuntos
Análise Química do Sangue/métodos , Fracionamento Químico/métodos , Cromatografia Líquida/métodos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Isoquinolinas/análise , Limite de Detecção , Oligopeptídeos/análise , Bibliotecas de Moléculas Pequenas/análise , Espectrometria de Massas em Tandem/métodos , Animais , Cães , Feminino , Humanos , Proteínas Imobilizadas/antagonistas & inibidores , Proteínas Imobilizadas/química , Proteínas Inibidoras de Apoptose/química , Isoquinolinas/química , Isoquinolinas/farmacologia , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
ACS Med Chem Lett ; 6(8): 850-5, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288683

RESUMO

JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile.

11.
Mol Pharm ; 12(2): 576-89, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25535667

RESUMO

The in vitro dissolution mechanism of an amorphous solid dispersion (ASD) remains elusive and highly individualized, yet rational design of ASDs with optimal performance and prediction of their in vitro/in vivo performance are very much desirable in the pharmaceutical industry. To this end, we carried out comprehensive investigation of various ASD systems of griseofulvin, felodipine, and ketoconazole, in PVP-VA or HPMC-AS at different drug loading. Physiochemical properties and processes related to drug-polymer-water interaction, including the drug crystallization tendency in aqueous medium, drug-polymer interaction before and after moisture exposure, supersaturation of drug in the presence of polymer, polymer dissolution kinetics, etc., were characterized and correlated with the dissolution performance of ASDs at different dose and different drug/polymer ratio. It was observed that ketoconazole/HPMC-AS ASD outperformed all other ASDs in various dissolution conditions, which was attributed to the drug's low crystallization tendency, the strong ketoconazole/HPMC-AS interaction and the robustness of this interaction against water disruption, the dissolution rate and the availability of HPMC-AS in solution, and the ability of HPMC-AS in maintaining ketoconazole supersaturation. It was demonstrated that all these properties have implications for the dissolution performance of various ASD systems, and further quantification of them could be used as potential predictors for in vitro dissolution of ASDs. For all ASDs investigated, HPMC-AS systems performed better than, or at least comparably with, their PVP-VA counterparts, regardless of the drug loading or dose. This observation cannot be solely attributed to the ability of HPMC-AS in maintaining drug supersaturation. We also conclude that, for fast crystallizers without strong drug-polymer interaction, the only feasible option to improve dissolution might be to lower the dose and the drug loading in the ASD. In this study, we implemented an ASD/water Flory-Huggins parameter plot, which might assist in revealing the physical nature of the drug-polymer interaction. We also introduced supersaturation parameter and dissolution performance parameter as two quantitative measurements to compare the abilities of polymers in maintaining drug supersaturation, and the dissolution performance of various solid dispersions, respectively.


Assuntos
Polímeros/química , Água/química , Cristalização , Felodipino/química , Griseofulvina/química , Cetoconazol/química , Espectroscopia de Ressonância Magnética , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Pharm Sci ; 103(12): 3924-3931, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25308627

RESUMO

BMS-B is a highly lipophilic compound (clog P 7.72) with poor aqueous solubility (<10 ng/mL at pH 1 and 6.5). The compound exhibits low bioavailability in preclinical species when dosed as cosolvent solution formulations, with reduced exposure upon dose escalation. The purpose of this study was to evaluate spray-dried dispersions (SDDs) for enhancing oral exposure and enabling toxicology studies of BMS-B. SDD solids of BMS-B were prepared with 10%-25% drug in hydroxypropyl methylcellulose acetate succinate and showed an enhanced dissolution profile relative to the neat form of the compound. When dosed in rats and monkeys at 5 mg/kg, the SDD exhibited comparable exposure relative to the solution formulation. The SDD was also dosed in rats at 200 and 400 mg/kg and showed dose-proportional exposure compared to the solution formulation. Based on in vitro and in vivo data, the SDD formulation was selected for the toxicology study of BMS-B in rats. In summary, although the SDD approach could be quite challenging for highly lipophilic compounds because of the limitation on wetting and dissolution, the present study demonstrated that SDD can be applied in drug discovery to enhance oral exposure and enable preclinical toxicology studies of highly lipophilic poorly water-soluble compounds.


Assuntos
Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Antagonistas do Receptor Purinérgico P2Y/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Haplorrinos , Macaca fascicularis , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/análogos & derivados , Metilcelulose/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Soluções/química , Água
13.
J Med Chem ; 52(23): 7360-3, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19778024
14.
J Med Chem ; 52(5): 1251-4, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19260711

RESUMO

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.


Assuntos
Aminopiridinas/síntese química , Antineoplásicos/síntese química , Di-Hidropiridinas/síntese química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridonas/síntese química , Administração Oral , Aminopiridinas/farmacocinética , Aminopiridinas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Di-Hidropiridinas/farmacocinética , Di-Hidropiridinas/farmacologia , Cães , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Piridonas/farmacocinética , Piridonas/farmacologia , Ratos , Solubilidade , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Bioorg Med Chem Lett ; 17(14): 3840-4, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17513108

RESUMO

We report a new class of non-nucleoside antivirals, the 7-oxo-4,7-dihydrothieno[3,2-b]pyridine-6-carboxamides, some of which possess remarkable potency versus a broad spectrum of herpesvirus DNA polymerases and excellent selectivity compared to human DNA polymerases. A critical factor in the level of activity is hypothesized to be conformational restriction of the key 2-aryl-2-hydroxyethylamine sidechain by an adjacent methyl group.


Assuntos
Citomegalovirus/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores da Síntese de Ácido Nucleico , Piridinas/química , Piridinas/síntese química , Piridinas/farmacologia , Relação Estrutura-Atividade
16.
Drug Dev Ind Pharm ; 30(2): 221-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15089057

RESUMO

Supersaturatable cosolvent (S-cosolvent) and supersaturatable self-emulsifying drug delivery systems (S-SEDDS) are designed to incorporate water soluble cellulosic polymers such as hydroxypropyl methylcellulose (HPMC), which may inhibit or retard drug precipitation in vivo. A poorly soluble drug, PNU-91325, was used as a model drug in this study to illustrate this formulation approach. The comparative in vitro studies indicated that the presence of a small amount HPMC in the formulation was critical to achieve a stabilized supersaturated state of PNU-91325 upon mixing with water. An in vivo study was conducted in dogs for assessment of the oral bioavailability of four formulations of PNU-91325. A five-fold higher bioavailability (approximately 60%) was observed from a S-cosolvent formulation containing propylene glycol (PG)+20 mg/g HPMC as compared to that (approximately 12%) of a neat polyethylene glycol (PEG) 400 formulation. The low bioavailability of the PEG 400 formulation is attributed to the uncontrolled precipitation of PNU-91325 upon dosing, a commonly observed phenomenon with the cosolvent approach. A S-SEDDS formulation composed of 30% w/w Cremophor (surfactant), 9% PEG 400, 5% DMA, 18% Pluronic L44, 20% HPMC, and other minor components showed an oral bioavailability of approximately 76%, comparable to that of a neat tween formulation (bioavailability: approximately 68%). The significant improvement of the oral bioavailability of the supersaturatable S-cosolvent and S-SEDDS formulations is attributed to a high free drug concentration in vivo as a result of the generation and stabilization of the supersaturated state due to the incorporation of polymeric precipitation inhibitor.


Assuntos
Hipoglicemiantes/farmacocinética , Piridinas/administração & dosagem , Piridinas/química , Adjuvantes Farmacêuticos , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Cães , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/administração & dosagem , Derivados da Hipromelose , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Metilcelulose/análogos & derivados , Veículos Farmacêuticos , Piridinas/sangue , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA