Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Breast ; 60: 238-244, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34768219

RESUMO

Different immunohistochemical programmed death-ligand 1 (PD-L1) assays and scorings have been reported to yield variable results in triple-negative breast cancer (TNBC). We compared the analytical concordance and reproducibility of four clinically relevant PD-L1 assays assessing immune cell (IC) score, tumor proportion score (TPS), and combined positive score (CPS) in TNBC. Primary TNBC resection specimens (n = 104) were stained for PD-L1 using VENTANA SP142, VENTANA SP263, DAKO 22C3, and DAKO 28-8. PD-L1 expression was scored according to guidelines on virtual whole slide images by four trained readers. The mean PD-L1 positivity at IC-score ≥1% and CPS ≥1 ranged between 53% and 75% with the highest positivity for SP263 and comparable levels for 22C3, 28-8, and SP142. Inter-assay agreement was good between 28-8 and 22C3 across all scores and cut-offs (kappa 0.68-0.74) and for both assays with SP142 at IC-score ≥1% and CPS ≥1 (kappa 0.61-0.67). The agreement between SP263 and all other assays was substantially lower for all scores. Inter-reader agreement for each assay was good to excellent for IC-score ≥1% (kappa 0.73-0.78) and CPS ≥1 (kappa 0.68-0.74), fair to good for CPS ≥10 (kappa 0.52-0.67) and TPS ≥1% (kappa 0.53-0.72). The percentage of overlapping cases in the positive/negative category was >90% between IC-score ≥1% and CPS ≥1 but below when comparing IC-score ≥1% with CPS ≥10. We demonstrate an overall good inter-reader agreement for all PD-L1 assays in TNBC along with assay specific differences in positivity and concordances, which may aid to select the right test strategy in routine diagnostics.

3.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680258

RESUMO

BACKGROUND: Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. METHODS: We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. RESULTS: Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with "true" MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). CONCLUSIONS: Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation.

4.
EJNMMI Res ; 11(1): 106, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636990

RESUMO

BACKGROUND: In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvß3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS: The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5ß1, αvß8, αvß6, and αvß3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvß3- and αvß6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvß3-targeted PET, αvß6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS: Novel radiopharmaceuticals targeting a number of different integrins, above all, αvß6, have proven their clinical potential and will play an increasingly important role in future theranostics.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34651225

RESUMO

BACKGROUND: Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. METHODS: The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin-eosin (HE) stained for comparison with multimodal in vivo imaging. RESULTS: The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. CONCLUSIONS: The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging.

6.
Br J Cancer ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671125

RESUMO

BACKGROUND: The Cancer Genome Atlas (TCGA) consortium described EBV positivity(+), high microsatellite instability (MSI-H), genomic stability (GS) and chromosomal instability (CIN) as molecular subtypes in gastric carcinomas (GC). We investigated the predictive and prognostic value of these subtypes with emphasis on CIN in the context of neoadjuvant chemotherapy (CTx) in GC. METHODS: TCGA subgroups were determined for 612 resected adenocarcinomas of the stomach and gastro-oesophageal junction (291 without, 321 with CTx) and 143 biopsies before CTx. EBV and MSI-H were analysed by standard assays. CIN was detected by multiplex PCRs analysing 22 microsatellite markers. Besides the TCGA classification, CIN was divided into four CIN-subgroups: low, moderate, substantial, high. Mutation profiling was performed for 52 tumours by next-generation sequencing. RESULTS: EBV(+) (HR, 0.48; 95% CI, 0.23-1.02), MSI-H (HR, 0.56; 95% CI, 0.35-0.89) and GS (HR, 0.72; 95% CI, 0.45-1.13) were associated with increased survival compared to CIN in the resected tumours. Considering the extended CIN-classification, CIN-substantial was a negative prognostic factor in uni- and multivariable analysis in resected tumours with CTx (each p < 0.05). In biopsies before CTx, CIN-high predicted tumour regression (p = 0.026), but was not prognostically relevant. CONCLUSION: A refined CIN classification reveals tumours with different biological characteristics and potential clinical implications.

7.
Br J Cancer ; 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34616012

RESUMO

BACKGROUND: Immunohistochemical loss of CDX2 has been proposed as a biomarker of dismal survival in colorectal carcinoma (CRC), especially in UICC Stage II/III. However, it remains unclear, how CDX2 expression is related to central hematoxylin-eosin (HE)-based morphologic parameters defined by 2019 WHO classification and how its prognostic relevance is compared to these parameters. METHODS: We evaluated CDX2 expression in 1003 CRCs and explored its prognostic relevance compared to CRC subtypes, tumour budding and WHO grade in the overall cohort and in specific subgroups. RESULTS: CDX2-low/absent CRCs were enriched in specific morphologic subtypes, right-sided and microsatellite-instable (MSI-H) CRCs (P < 0.001) and showed worse survival characteristics in the overall cohort/UICC Stage II/III (e.g. DFS: P = 0.005) and in microsatellite stable and left-sided CRCs, but not in MSI-H or right-sided CRCs. Compared with CDX2, all HE-based markers showed a significantly better prognostic discrimination in all scenarios. In multivariate analyses including all morphologic parameters, CDX2 was not an independent prognostic factor. CONCLUSION: CDX2 loss has some prognostic impact in univariate analyses, but its prognostic relevance is considerably lower compared to central HE-based morphologic parameters defined by the WHO classification and vanishes in multivariate analyses incorporating these factors.

8.
J Exp Clin Cancer Res ; 40(1): 322, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654445

RESUMO

BACKGROUND: Histone acetylation and deacetylation seem processes involved in the pathogenesis of Ewing sarcoma (EwS). Here histone deacetylases (HDAC) class I were investigated. METHODS: Their role was determined using different inhibitors including TSA, Romidepsin, Entinostat and PCI-34051 as well as CRISPR/Cas9 class I HDAC knockouts and HDAC RNAi. To analyze resulting changes microarray analysis, qRT-PCR, western blotting, Co-IP, proliferation, apoptosis, differentiation, invasion assays and xenograft-mouse models were used. RESULTS: Class I HDACs are constitutively expressed in EwS. Patients with high levels of individual class I HDAC expression show decreased overall survival. CRISPR/Cas9 class I HDAC knockout of individual HDACs such as HDAC1 and HDAC2 inhibited invasiveness, and blocked local tumor growth in xenograft mice. Microarray analysis demonstrated that treatment with individual HDAC inhibitors (HDACi) blocked an EWS-FLI1 specific expression profile, while Entinostat in addition suppressed metastasis relevant genes. EwS cells demonstrated increased susceptibility to treatment with chemotherapeutics including Doxorubicin in the presence of HDACi. Furthermore, HDACi treatment mimicked RNAi of EZH2 in EwS. Treated cells showed diminished growth capacity, but an increased endothelial as well as neuronal differentiation ability. HDACi synergizes with EED inhibitor (EEDi) in vitro and together inhibited tumor growth in xenograft mice. Co-IP experiments identified HDAC class I family members as part of a regulatory complex together with PRC2. CONCLUSIONS: Class I HDAC proteins seem to be important mediators of the pathognomonic EWS-ETS-mediated transcription program in EwS and in combination therapy, co-treatment with HDACi is an interesting new treatment opportunity for this malignant disease.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34619330

RESUMO

PURPOSE: Radiation-induced cognitive deficits have a severe negative impact on pediatric brain tumor patients. The severity of cognitive symptoms is related to the age of the child when radiation was applied, with the most severe effects seen in the youngest. Previous studies using whole-brain irradiation in mice confirmed these findings. To understand ipsilateral and contralateral changes in the hippocampus after partial-brain radiation therapy (PBRT) of the left hemisphere, we assessed the neuroplasticity and changes in the microvasculature of the irradiated and nonirradiated hippocampus in juvenile mice. METHODS AND MATERIALS: The left hemispheres of 5-week-old mice were irradiated with 2, 8, and 20 Gy and a fractionated dose of 8 Gy in 2 fractions using a computed tomography image guided small animal radiation research platform. Long-term potentiation (LTP) has been monitored ex vivo in the hippocampal cornu ammonis 1 (CA1) region and was assessed 3 days and 5 and 10 weeks after PBRT in both hemispheres and compared to a sham group. Irradiation effects on the hippocampus microvasculature were quantified by efficient tissue clearing and multiorgan volumetric imaging. RESULTS: LTP in irradiated hippocampal slices of juvenile mice declines 3 days after radiation, lasts up to 10 weeks in the irradiated part of the hippocampus, and correlates with a significantly reduced microvasculature length. Specifically, LTP inhibition is sustained in the irradiated (20 Gy, 8 Gy in 2 fractions, 8 Gy, 2 Gy) hippocampus, whereas the contralateral hippocampus remains unaffected after PBRT. LTP inhibition in the irradiated hemisphere after PBRT might be associated with an impaired microvascular network. CONCLUSION: PBRT induces a long-lasting impairment in neuroplasticity and the microvessel network of the irradiated hippocampus, whereas the contralateral hippocampus remains unaffected. These findings provide insight into the design of PBRT strategies to better protect the young developing brain from cognitive decline.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34559266

RESUMO

PURPOSE: To develop a new probe for the αvß6-integrin and assess its potential for PET imaging of carcinomas. METHODS: Ga-68-Trivehexin was synthesized by trimerization of the optimized αvß6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvß6, αvß8, αvß3, and α5ß1, as well as by cell binding assays on H2009 (αvß6-positive) and MDA-MB-231 (αvß6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, and metastatic PDAC. RESULTS: Ga-68-Trivehexin showed a high αvß6-integrin affinity (IC50 = 0.047 nM), selectivity over other subtypes (IC50-based factors: αvß8, 131; αvß3, 57; α5ß1, 468), blockable uptake in H2009 cells, and negligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a high target-specific uptake in tumor and a low non-specific uptake in other organs and tissues except the excretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results, showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10-13) as well as in kidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed high uptake in HNSCC but not in tumor-associated inflammation. CONCLUSIONS: Ga-68-Trivehexin is a valuable probe for imaging of αvß6-integrin expression in human cancers.

11.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a largely incurable cancer type. Its high mortality is attributed to the lack of efficient biomarkers for early detection combined with its high metastatic properties. The aim of our study was to investigate the role of NF-κB signaling in the development and metastasis of PDAC. We used the well-established KPC mouse model, and, through genetic manipulation, we deleted NF-κB essential modulator (NEMO) in the pancreata of KPC mice. Interestingly, NEMO deletion altered the differentiation status of the primary tumor but did not significantly affect its development. However, in the absence of NEMO, the median survival of the mice was prolonged by 13.5 days (16%). In addition, examination of the liver demonstrated that, whereas KPC mice occasionally developed liver macro-metastasis, NEMO deletion completely abrogated this outcome. Further analysis of the tumor revealed that the expression of epithelial-mesenchymal transition (EMT) transcription factors was diminished in the absence of NEMO. Conclusively, our study provides evidence that NF-κB is dispensable for the progression of high-grade PanINs towards PDAC. In contrast, NF-κB signaling is essential for the development of metastasis by regulating the gene expression program of EMT.

12.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34518373

RESUMO

Dendritic cells (DC), macrophages, and monocytes, collectively known as mononuclear phagocytes (MPs), critically control tissue homeostasis and immune defense. However, there is a paucity of models allowing to selectively manipulate subsets of these cells in specific tissues. The steady-state adult kidney contains four MP subsets with Clec9a-expression history that include the main conventional DC1 (cDC1) and cDC2 subtypes as well as two subsets marked by CD64 but varying levels of F4/80. How each of these MP subsets contributes to the different phases of acute kidney injury and repair is unknown. We created a mouse model with a Cre-inducible lox-STOP-lox-diphtheria toxin receptor cassette under control of the endogenous CD64 locus that allows for diphtheria toxin-mediated depletion of CD64-expressing MPs without affecting cDC1, cDC2, or other leukocytes in the kidney. Combined with specific depletion of cDC1 and cDC2, we revisited the role of MPs in cisplatin-induced kidney injury. We found that the intrinsic potency reported for CD11c+ cells to limit cisplatin toxicity is specifically attributed to CD64+ MPs, while cDC1 and cDC2 were dispensable. Thus, we report a mouse model allowing for selective depletion of a specific subset of renal MPs. Our findings in cisplatin-induced injury underscore the value of dissecting the functions of individual MP subsets in kidney disease, which may enable therapeutic targeting of specific immune components in the absence of general immunosuppression.


Assuntos
Injúria Renal Aguda/prevenção & controle , Células Dendríticas/imunologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Fagócitos/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Fagócitos/citologia , Receptores de IgG
13.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34518289

RESUMO

BACKGROUND: Neoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation. METHODS: Three neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient's immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient's TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing. RESULTS: Selected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation. CONCLUSIONS: We performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.

14.
J Exp Med ; 218(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533565

RESUMO

Sex disparity in cancer is so far inadequately considered, and components of its basis are rather unknown. We reveal that male versus female pancreatic cancer (PC) patients and mice show shortened survival, more frequent liver metastasis, and elevated hepatic metastasis-promoting gene expression. Tissue inhibitor of metalloproteinases 1 (TIMP1) was the secreted factor with the strongest male-biased expression in patient-derived pancreatic tumors. Male-specific up-regulation of systemic TIMP1 was demonstrated in PC mouse models and patients. Using TIMP1-competent and TIMP1-deficient PC mouse models, we established a causal role of TIMP1 in determining shortened survival and increased liver metastasis in males. Observing TIMP1 expression as a risk parameter in males led to identification of a subpopulation exhibiting increased TIMP1 levels (T1HI males) in both primary tumors and blood. T1HI males showed increased risk for liver metastasis development not only in PC but also in colorectal cancer and melanoma. This study reveals a lifestyle-independent sex disparity in liver metastasis and may open new avenues toward precision medicine.

15.
Leukemia ; 35(10): 2895-2905, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363012

RESUMO

Aberrant CXCR4 activity has been implicated in lymphoma pathogenesis, disease progression, and resistance to therapies. Using a mouse model with a gain-of-function CXCR4 mutation (CXCR4C1013G) that hyperactivates CXCR4 signaling, we identified CXCR4 as a crucial activator of multiple key oncogenic pathways. CXCR4 hyperactivation resulted in an expansion of transitional B1 lymphocytes, which represent the precursors of chronic lymphocytic leukemia (CLL). Indeed, CXCR4 hyperactivation led to a significant acceleration of disease onset and a more aggressive phenotype in the murine Eµ-TCL1 CLL model. Hyperactivated CXCR4 signaling cooperated with TCL1 to cause a distinct oncogenic transcriptional program in B cells, characterized by PLK1/FOXM1-associated pathways. In accordance, Eµ-TCL1;CXCR4C1013G B cells enriched a transcriptional signature from patients with Richter's syndrome, an aggressive transformation of CLL. Notably, MYC activation in aggressive lymphoma was associated with increased CXCR4 expression. In line with this finding, additional hyperactive CXCR4 signaling in the Eµ-Myc mouse, a model of aggressive B-cell cancer, did not impact survival. In summary, we here identify CXCR4 hyperactivation as a co-driver of an aggressive lymphoma phenotype.

16.
EJNMMI Res ; 11(1): 83, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453623

RESUMO

Correlation of in vivo imaging to histomorphological pathology in animal models requires comparative interdisciplinary expertise of different fields of medicine. From the morphological point of view, there is an urgent need to improve histopathological evaluation in animal model-based research to expedite translation into clinical applications. While different other fields of translational science were standardized over the last years, little was done to improve the pipeline of experimental pathology to ensure reproducibility based on pathological expertise in experimental animal models with respect to defined guidelines and classifications. Additionally, longitudinal analyses of preclinical models often use a variety of imaging methods and much more attention should be drawn to enable for proper co-registration of in vivo imaging methods with the ex vivo morphological read-outs. Here we present the development of the Comparative Experimental Pathology (CEP) unit embedded in the Institute of Pathology of the Technical University of Munich during the Collaborative Research Center 824 (CRC824) funding period together with selected approaches of histomorphological techniques for correlation of in vivo imaging to morphomolecular pathology.

17.
EJNMMI Res ; 11(1): 76, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34417907

RESUMO

BACKGROUND: The prostate-specific membrane antigen (PSMA) is a relevant target in prostate cancer, and immunohistochemistry studies showed associations with outcome. PSMA-ligand positron emission tomography (PET) is increasingly used for primary prostate cancer staging, and the molecular imaging TNM classification (miTNM) standardizes its reporting. We aimed to investigate the potential of PET-imaging to serve as a noninvasive imaging biomarker to predict disease outcome in primary prostate cancer after radical prostatectomy (RP). METHODS: In this retrospective analysis, 186 primary prostate cancer patients treated with RP who had undergone a 68Ga-PSMA-11 PET up to three months prior to the surgery were included. Maximum standardized uptake value (SUVmax), SUVmean, tumor volume (TV) and total lesion (TL) were collected from PET-imaging. Moreover, clinicopathological information, including age, serum prostate-specific antigen (PSA) level, and pathological characteristics, was assessed for disease outcome prediction. A stage group system for PET-imaging findings based on the miTNM framework was developed. RESULTS: At a median follow-up after RP of 38 months (interquartile range (IQR) 22-53), biochemical recurrence (BCR) was observed in 58 patients during the follow-up period. A significant association between a positive surgical margin and miN status (miN1 vs. miN0, odds ratio (OR): 5.428, p = 0.004) was detected. miT status (miT ≥ 3a vs. miT < 3, OR: 2.696, p = 0.003) was identified as an independent predictor for Gleason score (GS) ≥ 8. Multivariate Cox regression analysis indicated that PSA level (hazard ratio (HR): 1.024, p = 0.014), advanced GS (GS ≥ 8 vs. GS < 8, HR: 3.253, p < 0.001) and miT status (miT ≥ 3a vs. miT < 3, HR: 1.941, p = 0.035) were independent predictors for BCR. For stage I disease as determined by PET-imaging, a shorter BCR-free survival was observed in the patients with higher SUVmax (IA vs. IB stage, log-rank, p = 0.022). CONCLUSION: Preoperative miTNM classification from 68Ga-PSMA-11 PET correlates with postoperative GS, surgical margin status and time to BCR. The association between miTNM staging and outcome proposes 68Ga-PSMA-11 PET as a novel non-invasive imaging biomarker and potentially serves for ancillary pre-treatment stratification.

18.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205778

RESUMO

Invasive nonfunctioning pituitary tumors (NFPTs) are non-resectable neoplasms associated with frequent relapse and significant comorbidities. Current treatments, including somatostatin receptor 2 (SSTR2)-directed somatostatin analogs (SSAs), often fail against NFPTs. Thus, identifying effective therapies is clinically relevant. As NFPTs express SSTR3 at high levels, pasireotide, a multireceptor-targeted SSA, might be beneficial. Here we evaluated pasireotide in the only representative model of spontaneous NFPTs (MENX rats) in vivo. Octreotide long-acting release (LAR), pasireotide LAR, or placebo, were administered to age-matched, tumor-bearing MENX rats of both sexes for 28 d or 56 d. Longitudinal high-resolution magnetic resonance imaging monitored tumor growth. While tumors in placebo-treated rats increased in volume over time, PTs in drug-treated rats displayed significant growth suppression, and occasional tumor shrinkage. Pasireotide elicited stronger growth inhibition. Radiological responses correlated with tumors' proliferation rates. Both SSAs, but especially pasireotide, were more effective in female vs. male rats. Basal Sstr3 expression was significantly higher in the former group. It is noteworthy that female human NFPTs patients also have a trend towards higher SSTR3 expression. Altogether, our studies provide the rationale for testing pasireotide in patients with residual/recurrent NFPTs. If confirmed, the sex-related SSTR3 expression might be used as criteria to stratify NFPTs patients for treatment with pasireotide.

19.
Cancers (Basel) ; 13(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205964

RESUMO

The molecular carcinogenesis of intraductal tubulopapillary neoplasms (ITPN), recently described as rare neoplasms in the pancreato-biliary tract with a favorable prognosis despite a high incidence of associated pancreato-biliary adenocarcinoma, is still poorly understood. To identify driver genes, chromosomal gains and losses, mutational signatures, key signaling pathways, and potential therapeutic targets, the molecular profile of 11 biliary and 6 pancreatic ITPNs, associated with invasive adenocarcinoma in 14/17 cases, are studied by whole exome sequencing (WES). The WES of 17 ITPNs reveals common copy number variants (CNVs) broadly distributed across the genome, with recurrent chromosomal deletions primarily in 1p36 and 9p21 affecting the tumor suppressors CHD5 and CDKN2A, respectively, and gains in 1q affecting the prominent oncogene AKT3. The identified somatic nucleotide variants (SNVs) involve few core signaling pathways despite high genetic heterogeneity with diverse mutational spectra: Chromatin remodeling, the cell cycle, and DNA damage/repair. An OncoKB search identifies putative actionable genomic targets in 35% of the cases (6/17), including recurrent missense mutations of the FGFR2 gene in biliary ITPNs (2/11, 18%). Our results show that somatic SNV in classical cancer genes, typically associated with pancreato-biliary carcinogenesis, were absent (KRAS, IDH1/2, GNAS, and others) to rare (TP53 and SMAD4, 6%, respectively) in ITPNs. Mutational signature pattern analysis reveals a predominance of an age-related pattern. Our findings highlight that biliary ITPN and classical cholangiocarcinoma display commonalities, in particular mutations in genes of the chromatin remodeling pathway, and appear, therefore, more closely related than pancreatic ITPN and classical pancreatic ductal adenocarcinoma.

20.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298642

RESUMO

Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or ß particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with ß emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection-reaction-diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted ß particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...