Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Nucl Cardiol ; 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33501547

RESUMO

BACKGROUND: Little is known about the sequelae of chronic sympathetic nervous system (SNS) activation in patients with pulmonary arterial hypertension (PAH) and right heart failure (RHF). We aimed to, (1) validate the use of [11C]-meta-hydroxyephedrine (HED) for assessing right ventricular (RV) SNS integrity, and (2) determine the effects of ß-receptor blockade on ventricular function and myocardial SNS activity in a PAH rat model. METHODS: PAH was induced in male Sprague-Dawley rats (N = 36) using the Sugen+chronic hypoxia model. At week 5 post-injection, PAH rats were randomized to carvedilol (15 mg·kg-1·day-1 oral; N = 16) or vehicle (N = 16) for 4 weeks. Myocardial SNS function was assessed with HED positron emission tomography(PET). RESULTS: With increasing PAH disease severity, immunohistochemistry confirmed selective sympathetic denervation within the RV and sparing of parasympathetic nerves. These findings were confirmed on PET with a significant negative relationship between HED volume of distribution(DV) and right ventricular systolic pressure (RVSP) in the RV (r = -0.90, p = 0.0003). Carvedilol did not reduce hemodynamic severity compared to vehicle. RV ejection fraction (EF) was lower in both PAH groups compared to control (p < 0.05), and was not further reduced by carvedilol. Carvedilol improved SNS function in the LV with significant increases in the HED DV, and decreased tracer washout in the LV (p < 0.05) but not RV. CONCLUSIONS: PAH disease severity correlated with a reduction in HED DV in the RV. This was associated with selective sympathetic denervation. Late carvedilol treatment did not lead to recovery of RV function. These results support the role of HED imaging in assessing SNS innervation in a failing right ventricle.

2.
Eur Respir J ; 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509961

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease that involves pulmonary vasoconstriction, small vessel obliteration, large vessel thickening and obstruction, and development of plexiform lesions. PAH vasculopathy leads to progressive increases in pulmonary vascular resistance, right heart failure, and ultimately, premature death. Besides other cell types that are known to be involved in PAH pathogenesis (e.g. smooth muscle cells, fibroblasts, and leukocytes), recent studies demonstrate a crucial role of endothelial cells (ECs) in the initiation and progression of PAH. The EC-specific role in PAH is multi-faceted and impacts upon numerous pathophysiological processes including vasoconstriction, inflammation, coagulation, metabolism, and oxidative/nitrative stress, as well as cell viability, growth, and differentiation. In this review, we describe how EC dysfunction and cell signalling regulate the pathogenesis of PAH. We also highlight areas of research that warrant attention in future studies, and discuss potential molecular signalling pathways in ECs that could be targeted therapeutically in the prevention and treatment of PAH.

3.
Exp Cell Res ; 399(2): 112473, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428902

RESUMO

Sepsis is a complicated multi-system disorder characterized by a dysregulated host response to infection. Despite substantial progress in the understanding of mechanisms of sepsis, translation of these advances into clinically effective therapies remains challenging. Mesenchymal Stromal Cells (MSCs) possess immunomodulatory properties that have shown therapeutic promise in preclinical models of sepsis. The therapeutic effects of MSCs may vary depending on the source and type of these cells. In this comparative study, the gene expression pattern and surface markers of bone marrow-derived MSCs (BM-MSCs) and umbilical cord-derived MSCs (UC-MSCs) as well as their therapeutic effects in a clinically relevant mouse model of polymicrobial sepsis, cecal ligation and puncture (CLP), were investigated. The results showed remarkable differences in gene expression profile, surface markers and therapeutic potency in terms of enhancing survival and pro/anti-inflammatory responses between the two MSC types. BM-MSCs improved survival concomitant with an enhanced systemic bacterial clearance and improved inflammatory profile post CLP surgery. Despite some improvement in the inflammatory profile of the septic animals, treatment with UC-MSCs did not enhance survival or bacterial clearance. Overall, the beneficial therapeutic effects of BM-MSCs over UC-MSCs may likely be attributed to their pro-inflammatory function, and to some extent anti-inflammatory features, reflected in their gene expression pattern enhancing macrophage polarization to M1/M2 phenotypes resulting in a balanced pro- and anti-inflammatory response against polymicrobial sepsis.

4.
Crit Care Med ; 49(2): 311-323, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332817

RESUMO

OBJECTIVES: In many jurisdictions, ethical concerns require surrogate humane endpoints to replace death in small animal models of acute lung injury. Heterogenous selection and reporting of surrogate endpoints render interpretation and generalizability of findings between studies difficult. We aimed to establish expert-guided consensus among preclinical scientists and laboratory animal veterinarians on selection and reporting of surrogate endpoints, monitoring of these models, and the use of analgesia. DESIGN: A three-round consensus process, using modified Delphi methodology, with researchers who use small animal models of acute lung injury and laboratory animal veterinarians who provide care for these animals. Statements on the selection and reporting of surrogate endpoints, monitoring, and analgesia were generated through a systematic search of MEDLINE and Embase. Participants were asked to suggest any additional potential statements for evaluation. SETTING: A web-based survey of participants representing the two stakeholder groups (researchers, laboratory animal veterinarians). Statements were rated on level of evidence and strength of support by participants. A final face-to-face meeting was then held to discuss results. SUBJECTS: None. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Forty-two statements were evaluated, and 29 were rated as important, with varying strength of evidence. The majority of evidence was based on rodent models of acute lung injury. Endpoints with strong support and evidence included temperature changes and body weight loss. Behavioral signs and respiratory distress also received support but were associated with lower levels of evidence. Participants strongly agreed that analgesia affects outcomes in these models and that none may be necessary following nonsurgical induction of acute lung injury. Finally, participants strongly supported transparent reporting of surrogate endpoints. A prototype composite score was also developed based on participant feedback. CONCLUSIONS: We provide a preliminary framework that researchers and animal welfare committees may adapt for their needs. We have identified knowledge gaps that future research should address.

5.
Shock ; Publish Ahead of Print2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33378320

RESUMO

ABSTRACT: Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences supports the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5x105) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD.

6.
Cardiovasc Diagn Ther ; 10(5): 1735-1767, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33224787

RESUMO

Therapeutic options for right ventricular (RV) dysfunction and failure are strongly limited. Right heart failure (RHF) has been mostly addressed in the context of pulmonary arterial hypertension (PAH), where it is not possible to discern pulmonary vascular- and RV-directed effects of therapeutic approaches. In part, opposing pathomechanisms in RV and pulmonary vasculature, i.e., regarding apoptosis, angiogenesis and proliferation, complicate addressing RHF in PAH. Therapy effective for left heart failure is not applicable to RHF, e.g., inhibition of adrenoceptor signaling and of the renin-angiotensin system had no or only limited success. A number of experimental studies employing animal models for PAH or RV dysfunction or failure have identified beneficial effects of novel pharmacological agents, with most promising results obtained with modulators of metabolism and reactive oxygen species or inflammation, respectively. In addition, established PAH agents, in particular phosphodiesterase-5 inhibitors and soluble guanylate cyclase stimulators, may directly address RV integrity. Promising results are furthermore derived with microRNA (miRNA) and long non-coding RNA (lncRNA) blocking or mimetic strategies, which can target microvascular rarefaction, inflammation, metabolism or fibrotic and hypertrophic remodeling in the dysfunctional RV. Likewise, pre-clinical data demonstrate that cell-based therapies using stem or progenitor cells have beneficial effects on the RV, mainly by improving the microvascular system, however clinical success will largely depend on delivery routes. A particular option for PAH is targeted denervation of the pulmonary vasculature, given the sympathetic overdrive in PAH patients. Finally, acute and durable mechanical circulatory support are available for the right heart, which however has been tested mostly in RHF with concomitant left heart disease. Here, we aim to review current pharmacological, RNA- and cell-based therapeutic options and their potential to directly target the RV and to review available data for pulmonary artery denervation and mechanical circulatory support.

7.
Int J Technol Assess Health Care ; 36(5): 525-532, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33059782

RESUMO

BACKGROUND.: This study estimates the maximum price at which mesenchymal stem cell (MSC) therapy is deemed cost-effective for septic shock patients and identifies parameters that are most important in making treatment decisions. METHODS: We developed a probabilistic Markov model according to the sepsis care trajectory to simulate costs and quality-adjusted life years (QALYs) of septic shock patients receiving either MSC therapy or usual care over their lifetime. We calculated the therapeutic headroom by multiplying the gains attributable to MSCs with willingness-to-pay (WTP) threshold and derived the maximum reimbursable price (MRP) from the expected net monetary benefit and savings attributable to MSCs. We performed scenario analyses to assess the impact of changes to assumptions on the study findings. A value of information analysis is performed to identify parameters with greatest impact on the uncertainty around the cost-effectiveness of MSC therapy. RESULTS: At a WTP threshold of $50,000 per QALY, the therapeutic headroom and MRP of MSC therapy were $20,941 and $16,748, respectively; these estimates increased with the larger WTP values and the greater impact of MSCs on in-hospital mortality and hospital discharge rates. The parameters with greatest information value were MSC's impact on in-hospital mortality and the baseline septic shock in-hospital mortality. CONCLUSION: At a common WTP of $50,000/QALY, MSC therapy is deemed to be economically attractive if its unit cost does not exceed $16,748. This ceiling price can be increased to $101,450 if the therapy significantly reduces both in-hospital mortality and increases hospital discharge rates.

8.
Nat Neurosci ; 23(9): 1090-1101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661394

RESUMO

While the neuronal underpinnings of autism spectrum disorder (ASD) are being unraveled, vascular contributions to ASD remain elusive. Here, we investigated postnatal cerebrovascular development in the 16p11.2df/+ mouse model of 16p11.2 deletion ASD syndrome. We discover that 16p11.2 hemizygosity leads to male-specific, endothelium-dependent structural and functional neurovascular abnormalities. In 16p11.2df/+ mice, endothelial dysfunction results in impaired cerebral angiogenesis at postnatal day 14, and in altered neurovascular coupling and cerebrovascular reactivity at postnatal day 50. Moreover, we show that there is defective angiogenesis in primary 16p11.2df/+ mouse brain endothelial cells and in induced-pluripotent-stem-cell-derived endothelial cells from human carriers of the 16p11.2 deletion. Finally, we find that mice with an endothelium-specific 16p11.2 deletion (16p11.2ΔEC) partially recapitulate some of the behavioral changes seen in 16p11.2 syndrome, specifically hyperactivity and impaired motor learning. By showing that developmental 16p11.2 haploinsufficiency from endothelial cells results in neurovascular and behavioral changes in adults, our results point to a potential role for endothelial impairment in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Células Endoteliais/patologia , Acoplamento Neurovascular/fisiologia , Animais , Transtorno Autístico , Circulação Cerebrovascular/fisiologia , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 16 , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Deficiência Intelectual , Masculino , Camundongos , Neovascularização Fisiológica/genética
9.
Stem Cell Rev Rep ; 16(5): 812-827, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32671645

RESUMO

Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.

10.
ACS Nano ; 14(8): 9728-9743, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32697573

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can reduce inflammation, promote healing, and improve organ function, thereby providing a potential "cell-free" therapy. Prior to clinical translation, it is critical to synthesize existing evidence on preclinical methods and efficacy. To address these issues, we used gold standard systematic review methodology to consolidate information from all published animal studies investigating MSC-EVs as an intervention. A systematic search of MEDLINE and Embase identified 206 studies. Data were extracted in duplicate for methodology, experimental design, interventional traits, modifications, and outcomes. MSC-EVs were used to treat a variety of diseases and demonstrated benefits in 97% of studies. Adverse effects were reported in only three studies, two demonstrating tumor growth. A quarter of articles modified EVs to enhance efficacy, with 72% leading to markedly improved outcomes as compared to unmodified EVs. However, several key methodological concerns were evident. Only 60% of studies used nomenclature consistent with the size definitions of EVs. Ultracentrifugation (70%) and isolation kits (23%) were the most common isolation techniques with noted differences in yield and purity. EVs were inconsistently dosed by protein (68%) or particle concentration (16%). Two-thirds of studies administered xenogeneic EVs, suggesting immunocompatibility. Less than 25% of studies assessed EV biodistribution. Approaches for determining size, protein markers, and morphology were highly heterogeneous, with only 12 and 4 studies meeting the MISEV 2014 and 2018 recommendations, respectively. Knowledge gaps identified from this systematic review highlight important opportunities to improve preclinical design and methodology in the rapidly growing field of EV therapeutics.

12.
Thorax ; 75(7): 556-567, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32546573

RESUMO

INTRODUCTION: Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood. OBJECTIVES: To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs. METHODS AND RESULTS: A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3'UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation. CONCLUSIONS: Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda/genética , Regulação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais/métodos , MicroRNAs/genética , RNA Mensageiro/genética , Sepse/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , RNA Mensageiro/metabolismo , Transdução de Sinais
13.
J Heart Lung Transplant ; 39(7): 675-685, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32336606

RESUMO

BACKGROUND: Risk assessment is important for prognostication and individualized treatment decisions for patients with pulmonary arterial hypertension (PAH). The purpose was (1) to compare contemporary risk assessment tools and (2) to determine the prognostic significance of risk parameters of kidney function and whether they can further improve risk prediction for patients with PAH. METHODS: We identified a cohort of treatment-naive patients (n = 211) who received an incident diagnosis of PAH at the University of Ottawa Heart Institute. Using demographics, disease characteristics, and hemodynamic data at diagnosis, we categorized patients as low, intermediate, or high risk according to current European guidelines (European Society of Cardiology [ESC]) and registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL) risk scores. The primary end-point was transplant-free survival (TFS). RESULTS: Patients were predominantly women (64.6%) with World Health Organization function Class III symptoms (66.5%). The median TFS was 7.09 years. There was little agreement between ESC- and REVEAL-based risk estimates (weighted kappa = 0.21-0.34). Although both the ESC (log-rank, p = 0.0002) and REVEAL algorithms stratified TFS risk (p < 0.0001), the REVEAL score provided superior discrimination (C-statistic = 0.70 vs 0.59, p = 0.004). Renal function at diagnosis (p < 0.0001) and Δ renal function at 6 months (p < 0.0001) were identified as novel risk parameters and served to reclassify some patients in the intermediate-risk category to a lower or higher risk stratum (p < 0.0001). CONCLUSION: REVEAL-based strategies provide superior TFS risk discrimination to ESC/European Respiratory Society-based approaches. However, the classification of intermediate-risk patients varied significantly across tools. We demonstrate the importance of renal function, which further improved the stratification of risk in patients with PAH, particularly in patients who are considered intermediate risk.

14.
Acta Biomater ; 109: 109-120, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32302726

RESUMO

Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of ß1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.

15.
Biomaterials ; 247: 120010, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32259654

RESUMO

While encapsulation of cells within protective nanoporous gel cocoons increases cell retention and pro-survival integrin signaling, the influence of cocoon size and intra-capsular cell-cell interactions on therapeutic repair are unknown. Here, we employ a microfluidic platform to dissect the impact of cocoon size and intracapsular cell number on the regenerative potential of transplanted heart explant-derived cells. Deterministic increases in cocoon size boosted the proportion of multicellular aggregates within cocoons, reduced vascular clearance of transplanted cells and enhanced stimulation of endogenous repair. The latter being attributable to cell-cell stimulation of cytokine and extracellular vesicle production while also broadening of the miRNA cargo within extracellular vesicles. Thus, by tuning cocoon size and cell occupancy, the paracrine signature and retention of transplanted cells can be enhanced to promote paracrine stimulation of endogenous tissue repair.

16.
EClinicalMedicine ; 19: 100249, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31989101

RESUMO

Background: Characterization of the mesenchymal stromal cell (MSC) safety profile is important as this novel therapy continues to be evaluated in clinical trials for various inflammatory conditions. Due to an increase in published randomized controlled trials (RCTs) from 2012-2019, we performed an updated systematic review to further characterize the MSC safety profile. Methods: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials and Web of Science (to May 2018) were searched. RCTs that compared intravascular delivery of MSCs to controls in adult populations were included. Pre-specified adverse events were grouped according to: (1) immediate, (2) infection, (3) thrombotic/embolic, and (4) longer-term events (mortality, malignancy). Adverse events were pooled and meta-analyzed by fitting inverse-variance binary random effects models. Primary and secondary clinical efficacy endpoints were summarized descriptively. Findings: 7473 citations were reviewed and 55 studies met inclusion criteria (n = 2696 patients). MSCs as compared to controls were associated with an increased risk of fever (Relative Risk (RR) = 2·48, 95% Confidence Interval (CI) = 1·27-4·86; I2 = 0%), but not non-fever acute infusional toxicity, infection, thrombotic/embolic events, death, or malignancy (RR = 1·16, 0·99, 1·14, 0·78, 0·93; 95% CI = 0·70-1·91, 0·81-1·21, 0·67-1·95, 0·65-0·94, 0·60-1·45; I2 = 0%, 0%, 0%, 0%, 0%). No included trials were ended prematurely due to safety concerns. Interpretations: MSC therapy continues to exhibit a favourable safety profile. Future trials should continue to strengthen study rigor, reporting of MSC characterization, and adverse events. Funding: Stem Cell Network, Ontario Institute for Regenerative Medicine and Ontario Research Fund.

17.
Clin Sci (Lond) ; 134(2): 87-101, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31899480

RESUMO

Women with a history of preeclampsia (PE) have increased risk of cardiovascular disease (CVD) later in life. However, the molecular determinants underlying this risk remain unclear. We sought to understand how circulating miRNA levels are affected by prior PE, and related to biological pathways underpinning cardiovascular disease. RNA sequencing was used to profile plasma levels of 2578 miRNAs in a retrospective study of women with a history of PE or normotensive pregnancy, in two independent cohorts with either acute coronary syndrome (ACS) (n = 17-18/group) or no ACS (n = 20/group). Differential miRNA alterations were assessed in relation to a history of PE (within each cohort) or ACS (across cohorts), and compared with miRNAs previously reported to be altered during PE. A history of PE was associated with altered levels of 30 and 20 miRNAs in the ACS and non-ACS cohorts, respectively, whereas ACS exposure was associated with alterations in 259 miRNAs. MiR-206 was identified at the intersection of all comparisons relating to past/current PE and ACS exposure, and has previously been implicated in atherogenic activities related to hepatocytes, vascular smooth muscle cells and macrophages. Integration of all differentially altered miRNAs with their predicted and experimentally validated targets in silico revealed a number of highly targeted genes with potential atherogenic functions (including NFAT5, CCND2 and SMAD2), and one significantly enriched KEGG biological pathway (Wnt signaling) that was shared between all exposure groups. The present study provides novel insights into miRNAs, target genes and biological pathways that may underlie the long-term cardiovascular sequelae of PE.


Assuntos
Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , MicroRNA Circulante/sangue , MicroRNAs/sangue , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Via de Sinalização Wnt , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/complicações , Síndrome Coronariana Aguda/genética , Doenças Cardiovasculares/sangue , Estudos de Coortes , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Análise de Componente Principal , Via de Sinalização Wnt/genética
18.
Transl Stroke Res ; 11(3): 345-364, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31654281

RESUMO

There may be the potential to improve stroke recovery with mesenchymal stem cells (MSCs); however, questions about the efficacy and safety of this treatment remain. To address these issues and inform future studies, we performed a preclinical and clinical systematic review of MSC therapy for subacute and chronic ischemic stroke. MEDLINE, Embase, the Cochrane Register of Controlled Trials, and PubMed were searched. For the clinical review, interventional and observational studies of MSC therapy in ischemic stroke patients were included. For the preclinical review, interventional studies of MSC therapy using in vivo animal models of subacute or chronic stroke were included. Measures of safety and efficacy were assessed. Eleven clinical and 76 preclinical studies were included. Preclinically, MSC therapy was associated with significant benefits for multiple measures of motor and neurological function. Clinically, MSC therapy appeared to be safe, with no increase in adverse events reported (with the exception of self-limited fever immediately following injection). However, the efficacy of treatment was less apparent, with significant heterogeneity in both study design and effect size being observed. Additionally, in the only randomized phase II study to date, efficacy of MSC therapy was not observed. Preclinically, MSC therapy demonstrated considerable efficacy. Although MSC therapy demonstrated safety in the clinical setting, efficacy has yet to be determined. Future studies will need to address the discordance in the continuity of evidence as MSC therapy has been translated from "bench-to-bedside".

19.
Cardiovasc Res ; 116(6): 1113-1124, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782762

RESUMO

The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA