Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Negl Trop Dis ; 15(3): e0009257, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33740003

RESUMO

The management of mosquito-borne diseases is a challenge in southern coastal Ecuador, where dengue is hyper-endemic and co-circulates with other arboviral diseases. Prior work in the region has explored social-ecological factors, dengue case data, and entomological indices. In this study, we bring together entomological and epidemiological data to describe links between social-ecological factors associated with risk of dengue transmission at the household level in Machala, Ecuador. Households surveys were conducted from 2014-2017 to assess the presence of adult Aedes aegypti (collected via aspiration) and to enumerate housing conditions, demographics, and mosquito prevention behaviors. Household-level dengue infection status was determined by laboratory diagnostics in 2014-2015. Bivariate analyses and multivariate logistic regression models were used to identify social-ecological variables associated with household presence of female Ae. aegypti and household dengue infection status, respectively. Aedes aegypti presence was associated with interruptions in water service and weekly trash collection, and household air conditioning was protective against mosquito presence. Presence of female Ae. aegypti was not associated with household dengue infections. We identified shaded patios and head of household employment status as risk factors for household-level dengue infection, while window screening in good condition was identified as protective against dengue infection. These findings add to our understanding of the systems of mosquito-borne disease transmission in Machala, and in the larger region of southern Ecuador, aiding in the development of improved vector surveillance efforts, and targeted interventions.

2.
Nat Commun ; 12(1): 1233, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623008

RESUMO

Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.


Assuntos
Mudança Climática , Geografia , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Número Básico de Reprodução , Culicidae/fisiologia , Surtos de Doenças , Equador/epidemiologia , Humanos , Quênia/epidemiologia , Modelos Biológicos , Dinâmica não Linear , Fatores Socioeconômicos , Análise Espaço-Temporal , Fatores de Tempo
3.
PLoS Biol ; 18(11): e3000791, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33232312

RESUMO

Small island developing states in the Caribbean are among the most vulnerable countries on the planet to climate variability and climate change. In the last 3 decades, the Caribbean region has undergone frequent and intense heat waves, storms, floods, and droughts. This has had a detrimental impact on population health and well-being, including an increase in infectious disease outbreaks. Recent advances in climate science have enhanced our ability to anticipate hydrometeorological hazards and associated public health challenges. Here, we discuss progress towards bridging the gap between climate science and public health decision-making in the Caribbean to build health system resilience to extreme climatic events. We focus on the development of climate services to help manage mosquito-transmitted disease epidemics. There are numerous areas of ongoing biological research aimed at better understanding the direct and indirect impacts of climate change on the transmission of mosquito-borne diseases. Here, we emphasise additional factors that affect our ability to operationalise this biological understanding. We highlight a lack of financial resources, technical expertise, data sharing, and formalised partnerships between climate and health communities as major limiting factors to developing sustainable climate services for health. Recommendations include investing in integrated climate, health and mosquito surveillance systems, building regional and local human resource capacities, and designing national and regional cross-sectoral policies and national action plans. This will contribute towards achieving the Sustainable Development Goals (SDGs) and maximising regional development partnerships and co-benefits for improved health and well-being in the Caribbean.

4.
Epidemics ; 33: 100400, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33130412

RESUMO

INTRODUCTION: High quality epidemic forecasting and prediction are critical to support response to local, regional and global infectious disease threats. Other fields of biomedical research use consensus reporting guidelines to ensure standardization and quality of research practice among researchers, and to provide a framework for end-users to interpret the validity of study results. The purpose of this study was to determine whether guidelines exist specifically for epidemic forecast and prediction publications. METHODS: We undertook a formal systematic review to identify and evaluate any published infectious disease epidemic forecasting and prediction reporting guidelines. This review leveraged a team of 18 investigators from US Government and academic sectors. RESULTS: A literature database search through May 26, 2019, identified 1467 publications (MEDLINE n = 584, EMBASE n = 883), and a grey-literature review identified a further 407 publications, yielding a total 1777 unique publications. A paired-reviewer system screened in 25 potentially eligible publications, of which two were ultimately deemed eligible. A qualitative review of these two published reporting guidelines indicated that neither were specific for epidemic forecasting and prediction, although they described reporting items which may be relevant to epidemic forecasting and prediction studies. CONCLUSIONS: This systematic review confirms that no specific guidelines have been published to standardize the reporting of epidemic forecasting and prediction studies. These findings underscore the need to develop such reporting guidelines in order to improve the transparency, quality and implementation of epidemic forecasting and prediction research in operational public health.

6.
Heliyon ; 6(9): e04858, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32954035

RESUMO

Background: Argentina is located at the southern temperate range of arboviral transmission by the mosquito Aedes aegypti and has experienced a rapid increase in disease transmission in recent years. Here we present findings from an entomological surveillance study that began in Córdoba, Argentina, following the emergence of dengue in 2009. Methods: From 2009 to 2017, larval surveys were conducted monthly, from November to May, in 600 randomly selected households distributed across the city. From 2009 to 2013, ovitraps (n = 177) were sampled weekly to monitor the oviposition activity of Ae. aegypti. We explored seasonal and interannual dynamics of entomological variables and dengue transmission. Cross correlation analysis was used to identify significant lag periods. Results: Aedes aegypti were detected over the entire study period, and abundance peaked during the summer months (January to March). We identified a considerable increase in the proportion of homes with juvenile Ae. aegypti over the study period (from 5.7% of homes in 2009-10 to 15.4% of homes in 2016-17). Aedes aegypti eggs per ovitrap and larval abundance were positively associated with temperature in the same month. Autochthonous dengue transmission peaked in April, following a peak in imported dengue cases in March; autochthonous dengue was not positively associated with vector or climate variables. Conclusions: This longitudinal study provides insights into the complex dynamics of arbovirus transmission and vector populations in a temperate region of arbovirus emergence. Our findings suggest that Córdoba is well suited for arbovirus disease transmission, given the stable and abundant vector populations. Further studies are needed to better understand the role of regional human movement.

8.
BMC Public Health ; 20(1): 1065, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631315

RESUMO

BACKGROUND: Dengue is a major emerging infectious disease, endemic throughout the tropics and subtropics, with approximately 2.5 billion people at risk globally. Active (AS) and passive surveillance (PS), when combined, can improve our understanding of dengue's complex disease dynamics to guide effective, targeted public health interventions. The objective of this study was to compare findings from the Ministry of Health (MoH) PS to a prospective AS arbovirus research study in Machala, Ecuador in 2014 and 2015. METHODS: Dengue cases in the PS system were compared to laboratory confirmed acute dengue illness cases that entered the AS study during the study period. Variables of interest included age class and sex. Outbreak detection curves by epidemiologic week, overall cumulative incidence and age-specific incidence proportions were calculated. Descriptive statistics were tabulated for all variables of interest. Chi-square tests were performed to compare demographic characteristics between the AS and PS data sets in 2014 and 2015. RESULTS: 177 and 245 cases were identified from 1/1/2014 to 12/31/2015 by PS and AS, respectively; nine cases appeared in both systems. AS identified a greater number of laboratory-confirmed cases in 2014, accounting for more than 60% of dengue cases in the study area. In 2015, the opposite trend was observed with PS identifying 60% of the dengue cases in the study area. Peak transmission time in laboratory confirmed dengue illness, as noted by AS and PS was similar in 2014, whereas earlier detection (7 weeks) was observed by AS in 2015. Younger patients were more frequently identified by PS, while older patients were identified more frequently by AS. The cumulative incidence proportion for laboratory confirmed dengue illness reported via PS to the MoH was 4.12 cases per 10,000 residents in 2014, and 2.21 cases per 10,000 residents in 2015. CONCLUSIONS: Each surveillance system captured distinct demographic subgroups within the Machala population, possibly due to differences in healthcare seeking behaviors, access to care, emerging threats of other viruses transmitted by the same mosquito vector and/or differences in clinical presentation. Integrating AS with pre-existing PS can aid in identifying additional cases in previously underdiagnosed subpopulations, improving our understanding of disease dynamics, and facilitating the implementation of timely public health interventions.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Vigilância em Saúde Pública/métodos , Vigilância de Evento Sentinela , Adulto , Animais , Distribuição de Qui-Quadrado , Equador/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores , Estudos Prospectivos , Saúde Pública/estatística & dados numéricos , Adulto Jovem
9.
Curr Opin Virol ; 40: 41-47, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32569752

RESUMO

Climate change is leading to increases in global temperatures and erratic precipitation patterns, both of which are contributing to the expansion of mosquito-borne arboviruses and the populations of the mosquitos that vector them. Herein, we review recent evidence of emergence and expansion of arboviruses transmitted by Aedes mosquitos that has been driven in part by environmental changes. We present as a case study of recent work from Córdoba, Argentina, where dengue has been actively emerging in the past decade. We review recent empirical and modeling studies that aim to understand the impact of climate on future expansion of arboviruses, and we highlight gaps in empirical studies linking climate to arbovirus transmission at regional levels.

10.
Am J Trop Med Hyg ; 103(1): 149-156, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342853

RESUMO

Dengue fever and other febrile mosquito-borne diseases place considerable health and economic burdens on small island nations in the Caribbean. Here, we used two methods of cluster detection to find potential hotspots of transmission of dengue and chikungunya in Barbados, and to assess the impact of input surveillance data and methodology on observed patterns of risk. Using Moran's I and spatial scan statistics, we analyzed the geospatial and temporal distribution of disease cases and rates across Barbados for dengue fever in 2013-2016, and a chikungunya outbreak in 2014. During years with high numbers of dengue cases, hotspots for cases were found with Moran's I in the south and central regions in 2013 and 2016, respectively. Using smoothed disease rates, clustering was detected in all years for dengue. Hotspots suggesting higher rates were not detected via spatial scan statistics, but coldspots suggesting lower than expected rates of disease activity were found in southwestern Barbados during high case years of dengue. No significant spatiotemporal structure was found in cases during the chikungunya outbreak. Spatial analysis of surveillance data is useful in identifying outbreak hotspots, potentially complementing existing early warning systems. We caution that these methods should be used in a manner appropriate to available data and reflecting explicit public health goals-managing for overall case numbers or targeting anomalous rates for further investigation.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/patogenicidade , Vírus da Dengue/patogenicidade , Dengue/epidemiologia , Surtos de Doenças , Análise Espaço-Temporal , Aedes/virologia , Animais , Barbados/epidemiologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Análise por Conglomerados , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/fisiologia , Doenças Endêmicas/estatística & dados numéricos , Monitoramento Epidemiológico , Humanos , Incidência , Mosquitos Vetores/virologia , Saúde Pública , Risco
11.
Front Public Health ; 8: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117847

RESUMO

Dengue viruses (DENV) pose a significant and increasing threat to human health across broad regions of the globe. Currently, prevention, control, and treatment strategies are limited. Promising interventions are on the horizon, including multiple vaccine candidates under development and a renewed and innovative focus on controlling the vector, Aedes aegypti. However, significant gaps persist in our understanding of the similarities and differences in DENV epidemiology across regions of potential implementation and evaluation. In this manuscript, we highlight and compare findings from two analogous cluster-based studies for DENV transmission and pathogenesis conducted in Thailand and Ecuador to identify key features and questions for further pursuit. Despite a remarkably similar incidence of DENV infection among enrolled neighborhood contacts at the two sites, we note a higher occurrence of secondary infection and severe illness in Thailand compared to Ecuador. A higher force of infection in Thailand, defined as the incidence of infection among susceptible individuals, is suggested by the higher number of captured Aedes mosquitoes per household, the increasing proportion of asymptomatic infections with advancing age, and the high proportion of infections identified as secondary-type infections by serology. These observations should be confirmed in long-term, parallel prospective cohort studies conducted across regions, which would advantageously permit characterization of baseline immune status (susceptibility) and contemporaneous assessment of risks and risk factors for dengue illness.

12.
BMC Evol Biol ; 20(1): 31, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075576

RESUMO

BACKGROUND: In recent years, Ecuador and other South American countries have experienced an increase in arboviral diseases. A rise in dengue infections was followed by introductions of chikungunya and Zika, two viruses never before seen in many of these areas. Furthermore, the latest socioeconomic and political instability in Venezuela and the mass migration of its population into the neighboring countries has given rise to concerns of infectious disease spillover and escalation of arboviral spread in the region. RESULTS: We performed phylogeographic analyses of dengue (DENV) and chikungunya (CHIKV) virus genomes sampled from a surveillance site in Ecuador in 2014-2015, along with genomes from the surrounding countries. Our results revealed at least two introductions of DENV, in 2011 and late 2013, that initially originated from Venezuela and/or Colombia. The introductions were subsequent to increases in the influx of Venezuelan and Colombian citizens into Ecuador, which in 2013 were 343% and 214% higher than in 2009, respectively. However, we show that Venezuela has historically been an important source of DENV dispersal in this region, even before the massive exodus of its population, suggesting already established paths of viral distribution. Like DENV, CHIKV was introduced into Ecuador at multiple time points in 2013-2014, but unlike DENV, these introductions were associated with the Caribbean. Our findings indicated no direct CHIKV connection between Ecuador, Colombia, and Venezuela as of 2015, suggesting that CHIKV was, at this point, not following the paths of DENV spread. CONCLUSION: Our results reveal that Ecuador is vulnerable to arbovirus import from many geographic locations, emphasizing the need of continued surveillance and more diversified prevention strategies. Importantly, increase in human movement along established paths of viral dissemination, combined with regional outbreaks and epidemics, may facilitate viral spread and lead to novel virus introductions. Thus, strengthening infectious disease surveillance and control along migration routes and improving access to healthcare for the vulnerable populations is of utmost importance.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Vírus da Dengue/classificação , Vírus da Dengue/genética , Dengue/epidemiologia , Emigração e Imigração/estatística & dados numéricos , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Colômbia/epidemiologia , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Surtos de Doenças , Equador/epidemiologia , Emigração e Imigração/tendências , Genoma Viral , Genótipo , Humanos , Mutação de Sentido Incorreto/fisiologia , Fenótipo , Filogeografia , Análise de Sequência de DNA , América do Sul/epidemiologia , Venezuela/epidemiologia , Zika virus/isolamento & purificação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
13.
Parasit Vectors ; 13(1): 78, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066486

RESUMO

BACKGROUND: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. METHODS: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. RESULTS: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P < 0.0001). CONCLUSIONS: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.


Assuntos
Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores , Açúcares/química , Aedes , Animais , Ingestão de Alimentos , Equador , Feminino , Masculino
14.
Int J Health Geogr ; 19(1): 3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046732

RESUMO

BACKGROUND: Vector-borne disease places a high health and economic burden in the American tropics. Comprehensive vector control programs remain the primary method of containing local outbreaks. With limited resources, many vector control operations struggle to serve all affected communities within their districts. In the coastal city of Machala, Ecuador, vector control services, such as application of larvicides and truck-mounted fogging, are delivered through two deployment facilities managed by the Ecuadorian Ministry of Health. Public health professionals in Machala face several logistical issues when delivering mosquito abatement services, namely applying limited resources in ways that will most effectively suppress vectors of malaria, dengue, and encephalitis viruses. METHODS: Using a transportation network analysis framework, we built models of service areas and optimized delivery routes based on distance costs associated with accessing neighborhoods throughout the city. Optimized routes were used to estimate the relative cost of accessing neighborhoods for mosquito control services in Machala, creating a visual tool to guide decision makers and maximize mosquito control program efficiency. Location-allocation analyses were performed to evaluate efficiency gains of moving service deployment to other available locations with respect to distance to service hub, neighborhood population, dengue incidence, and housing condition. RESULTS: Using this framework, we identified different locations for targeting mosquito control efforts, dependent upon management goals and specified risk factors of interest, including human population, housing condition, and reported dengue incidence. Our models indicate that neighborhoods on the periphery of Machala with the poorest housing conditions are the most costly to access. Optimal locations of facilities for deployment of control services change depending on pre-determined management priorities, increasing the population served via inexpensive routes up to 34.9%, and reducing overall cost of accessing neighborhoods up to 12.7%. CONCLUSIONS: Our transportation network models indicate that current locations of mosquito control facilities in Machala are not ideal for minimizing driving distances or maximizing populations served. Services may be optimized by moving vector control operations to other existing public health facilities in Machala. This work represents a first step in creating a spatial tool for planning and critically evaluating the systematic delivery of mosquito control services in Machala and elsewhere.

15.
PLoS Negl Trop Dis ; 14(2): e0007969, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059026

RESUMO

BACKGROUND: Dengue, chikungunya, and Zika are arboviruses of major global health concern. Decisions regarding the clinical management of suspected arboviral infection are challenging in resource-limited settings, particularly when deciding on patient hospitalization. The objective of this study was to determine if hospitalization of individuals with suspected arboviral infections could be predicted using subject intake data. METHODOLOGY/PRINCIPAL FINDINGS: Two prediction models were developed using data from a surveillance study in Machala, a city in southern coastal Ecuador with a high burden of arboviral infections. Data were obtained from subjects who presented at sentinel medical centers with suspected arboviral infection (November 2013 to September 2017). The first prediction model-called the Severity Index for Suspected Arbovirus (SISA)-used only demographic and symptom data. The second prediction model-called the Severity Index for Suspected Arbovirus with Laboratory (SISAL)-incorporated laboratory data. These models were selected by comparing the prediction ability of seven machine learning algorithms; the area under the receiver operating characteristic curve from the prediction of a test dataset was used to select the final algorithm for each model. After eliminating those with missing data, the SISA dataset had 534 subjects, and the SISAL dataset had 98 subjects. For SISA, the best prediction algorithm was the generalized boosting model, with an AUC of 0.91. For SISAL, the best prediction algorithm was the elastic net with an AUC of 0.94. A sensitivity analysis revealed that SISA and SISAL are not directly comparable to one another. CONCLUSIONS/SIGNIFICANCE: Both SISA and SISAL were able to predict arbovirus hospitalization with a high degree of accuracy in our dataset. These algorithms will need to be tested and validated on new data from future patients. Machine learning is a powerful prediction tool and provides an excellent option for new management tools and clinical assessment of arboviral infection.


Assuntos
Infecções por Arbovirus/terapia , Arbovirus/fisiologia , Adolescente , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/patologia , Infecções por Arbovirus/virologia , Arbovirus/genética , Criança , Pré-Escolar , Equador/epidemiologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Aprendizado de Máquina , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Índice de Gravidade de Doença
16.
J Infect Dis ; 221(1): 91-101, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31428794

RESUMO

BACKGROUND: Micronutrients are known to modulate host immunity, and there is limited literature on this association in the context of dengue virus infection (DENV). METHODS: Using a nested case-control design in a surveillance program, we measured the following: anthropometry; nutritional biomarkers including serum ferritin, soluble transferrin receptor, retinol-binding protein (RBP), 25-hydroxy vitamin D, folate, and vitamin B12; and a panel of immune response markers. We then compared these measures across 4 illness categories: healthy control, nonfebrile DENV, other febrile illness (OFI), and apparent DENV using multivariate polytomous logistic regression models. RESULTS: Among 142 participants, serum ferritin (ng/mL) was associated with apparent DENV compared to healthy controls (odds ratio [OR], 2.66; confidence interval [CI], 1.53-4.62; P = .001), and RBP concentrations (µmol/L) were associated with apparent DENV (OR, 0.03; CI, 0.00-0.30; P = .003) and OFI (OR, 0.02; CI, 0.00-0.24; P = .003). In a subset of 71 participants, interleukin-15 levels (median fluorescent intensity) were positively associated with apparent DENV (OR, 1.09; CI, 1.03-1.14; P = .001) and negatively associated with nonfebrile DENV (OR, 0.89; CI, 0.80-0.99; P = .03) compared to healthy controls. CONCLUSIONS: After adjusting for the acute-phase response, serum ferritin and RBP concentrations were associated with apparent DENV and may represent biomarkers of clinical importance in the context of dengue illness.


Assuntos
Dengue/sangue , Dengue/imunologia , Interleucina-15/sangue , Vigilância da População , Adolescente , Biomarcadores/sangue , Índice de Massa Corporal , Tamanho Corporal , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Equador , Feminino , Ferritinas/sangue , Febre/sangue , Febre/virologia , Humanos , Masculino , Micronutrientes , Estado Nutricional , Orosomucoide/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina D/sangue , Adulto Jovem
17.
Sci Data ; 6(1): 276, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754110

RESUMO

The distribution of arbovirus disease transmission is expanding from the tropics and subtropics into temperate regions worldwide. The temperate city of Córdoba, Argentina has been experiencing the emergence of dengue virus, transmitted by the mosquito Aedes aegypti, since 2009, when autochthonous transmission of the virus was first recorded in the city. The aim of this work is to characterize the emergence of dengue and related arboviruses (Zika and chikungunya) in Córdoba since 2009. Herein, we present a data set with all known information about transmission of dengue, Zika, and chikungunya viruses in Córdoba, Argentina from 2009-2018, including what information is known of dengue virus (DENV) serotypes in circulation and origins of imported cases. The data presented in this work will assist researchers in investigating drivers of arbovirus emergence and transmission in Córdoba, Argentina and contribute to a better understanding of the global problem of the expanding distribution of arbovirus disease transmission.


Assuntos
Febre de Chikungunya/transmissão , Dengue/transmissão , Infecção por Zika virus/transmissão , Aedes/virologia , Animais , Arbovirus , Argentina/epidemiologia , Febre de Chikungunya/epidemiologia , Vírus Chikungunya , Cidades , Dengue/epidemiologia , Vírus da Dengue , Humanos , Zika virus , Infecção por Zika virus/epidemiologia
18.
PLoS Negl Trop Dis ; 13(10): e0007772, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658267

RESUMO

BACKGROUND: Small island developing states (SIDS) in the Caribbean region are challenged with managing the health outcomes of a changing climate. Health and climate sectors have partnered to co-develop climate services to improve the management of emerging arboviral diseases such as dengue fever, for example, through the development of climate-driven early warning systems. The objective of this study was to identify health and climate stakeholder perceptions and needs in the Caribbean, with respect to the development of climate services for arboviruses. METHODS: Stakeholders included public decision makers and practitioners from the climate and health sectors at the regional (Caribbean) level and from the countries of Dominica and Barbados. From April to June 2017, we conducted interviews (n = 41), surveys (n = 32), and national workshops with stakeholders. Survey responses were tabulated, and audio recordings were transcribed and analyzed using qualitative coding to identify responses by research topic, country/region, and sector. RESULTS: Health practitioners indicated that their jurisdiction is currently experiencing an increased risk of arboviral diseases associated with climate variability, and most anticipated that this risk will increase in the future. National health sectors reported financial limitations and a lack of technical expertise in geographic information systems (GIS), statistics, and modeling, which constrained their ability to implement climate services for arboviruses. National climate sectors were constrained by a lack of personnel. Stakeholders highlighted the need to strengthen partnerships with the private sector, academia, and civil society. They identified a gap in local research on climate-arbovirus linkages, which constrained the ability of the health sector to make informed decisions. Strategies to strengthen the climate-health partnership included a top-down approach by engaging senior leadership, multi-lateral collaboration agreements, national committees on climate and health, and shared spaces of dialogue. Mechanisms for mainstreaming climate services for health operations to control arboviruses included climatic-health bulletins and an online GIS platform that would allow for regional data sharing and the generation of spatiotemporal epidemic forecasts. Stakeholders identified a 3-month forecast of arboviral illness as the optimal time frame for an epidemic forecast. CONCLUSIONS: These findings support the creation of interdisciplinary and intersectoral 'communities of practice' and the co-design of climate services for the Caribbean public health sector. By fostering the effective use of climate information within health policy, research and practice, nations will have greater capacity to adapt to a changing climate.


Assuntos
Aedes , Controle de Doenças Transmissíveis , Doenças Transmissíveis , Saúde Pública , Adolescente , Adulto , Aedes/virologia , Idoso , Animais , Infecções por Arbovirus/prevenção & controle , Barbados , Mudança Climática , Doenças Transmissíveis/epidemiologia , Assistência à Saúde , Dengue/prevenção & controle , Dengue/transmissão , Vetores de Doenças , Dominica , Feminino , Política de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Setor Público , Participação dos Interessados , Inquéritos e Questionários , Adulto Jovem
19.
PLoS One ; 14(10): e0224171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31652292

RESUMO

BACKGROUND: Populations in coastal cities are exposed to increasing risk of flooding, resulting in rising damages to health and assets. Adaptation measures, such as early warning systems for floods (EWSFs), have the potential to reduce the risk and impact of flood events when tailored to reflect the local social-ecological context and needs. Community perceptions and experiences play a critical role in risk management, since perceptions influence people's behaviors in response to EWSFs and other interventions. METHODS: We investigated community perceptions and responses in flood-prone periurban areas in the coastal city of Machala, Ecuador. Focus groups (n = 11) were held with community members (n = 65 people) to assess perceptions of flood exposure, sensitivity, adaptive capacity, and current alert systems. Discussions were audio recorded, transcribed, and coded by topic. Participatory maps were field validated, georeferenced, and digitized using GIS software. Qualitative data were triangulated with historical government information on rainfall, flood events, population demographics, and disease outbreaks. RESULTS: Flooding was associated with seasonal rainfall, El Niño events, high ocean tides, blocked drainage areas, overflowing canals, collapsed sewer systems, and low local elevation. Participatory maps revealed spatial heterogeneity in perceived flood risk across the community. Ten areas of special concern were mapped, including places with strong currents during floods, low elevation areas with schools and homes, and other places that accumulate stagnant water. Sensitive populations included children, the elderly, physically handicapped people, low-income families, and recent migrants. Flood impacts included damages to property and infrastructure, power outages, and the economic cost of rebuilding/repairs. Health impacts included outbreaks of infectious diseases, skin infections, snakebite, and injury/drowning. Adaptive capacity was weakest during the preparation and recovery stages of flooding. Participants perceived that their capacity to take action was limited by a lack of social organization, political engagement, and financial capital. People perceived that flood forecasts were too general, and instead relied on alerts via social media. CONCLUSIONS: This study highlights the challenges and opportunities for climate change adaptation in coastal cities. Areas of special concern provide clear local policy targets. The participatory approach presented here (1) provides important context to shape local policy and interventions in Ecuador, complimenting data gathered through standard flood reports, (2) provides a voice for marginalized communities and a mechanism to raise local awareness, and (3) provides a research framework that can be adapted to other resource-limited coastal communities at risk of flooding.


Assuntos
Pesquisa Participativa Baseada na Comunidade/métodos , Inundações/prevenção & controle , Populações Vulneráveis/psicologia , Adulto , Mudança Climática , Desastres/prevenção & controle , Equador , Previsões , Humanos , Pesquisa Qualitativa
20.
Am J Trop Med Hyg ; 101(5): 1087-1090, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31549616

RESUMO

Tick-borne diseases (TBDs) are a growing public health threat and are increasingly identified as the cause of undifferentiated febrile illness. There is a significant gap in our understanding of ticks and their associated pathogens in Ecuador. An arboviral surveillance study allowed us to explore potential exposure to TBDs in febrile subjects. We tested plasma samples from 222 febrile subjects for spotted fever group rickettsial (SFGR) antibodies from southern coastal Ecuador in 2014-2015 via ELISA. Fifty-five (25%) subjects had evidence of anti-SFRG IgG or IgM antibodies. Although attempts to detect Rickettsia species in plasma by polymerase chain reaction were unsuccessful, these preliminary data suggest the possibility of endemic SFGR transmission in Ecuador. To better understand the burden and entomological risk for TBDs in Ecuador, future studies should expand TBD surveillance in humans, document common human-biting ticks, and measure pathogen carriage rates in questing ticks.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Arbovirus/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Rickettsiose do Grupo da Febre Maculosa/imunologia , Adolescente , Adulto , Infecções por Arbovirus/epidemiologia , Criança , Coinfecção/epidemiologia , Equador/epidemiologia , Feminino , Febre , Humanos , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Rickettsiose do Grupo da Febre Maculosa/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...