Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Eur J Med Res ; 26(1): 121, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641963


BACKGROUND: Percutaneous coronary interventions (PCI) of bifurcation stenoses are both complex and challenging. Stenting strategies share that the stents' side cells must be carefully explored and appropriately prepared using balloons or stents. So far, stent manufacturers have not provided any information regarding side-branch expansion capacity of their stent platforms. AIMS: Given that drug-eluting stent (DES) information regarding their mechanical capacity of side-branch expansion is not available, we aimed to evaluate contemporary DES (Orsiro, BIOTRONIK AG; Xience Sierra, Abbott Vascular; Resolute Integrity, Medtronic; Promus Premier Select, Boston Scientific; Supraflex Cruz, Sahajan and Medical Technologies) by their side-branch expansion behavior using in vitro bench testing. METHODS: In this in vitro study, we analyzed five commercially available DES (diameter 3.0 mm), measuring their side-branch expansion following inflation of different high-pressure non-compliant (NC) balloons (balloon diameter: 2.00-4.00 mm), thereby revealing the morphological characteristics of their side-branch expansion capacities. RESULTS: We demonstrated that all tested contemporary DES platforms could withstand large single-cell deformations, up to 4.0 mm. As seen in our side-branch experiments, DES designs consisting of only two connectors between strut rings did not only result in huge cell areas, but also in larger cell diameters following side-branch expansion compared with DES designs using three or more connectors. Furthermore, the stent cell diameter attained was below the balloon diameter at normal pressure. CONCLUSIONS: We recommend that the expansion capacity of side-branches should be considered in stent selection for bifurcation interventions.

BMC Mol Cell Biol ; 22(1): 32, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078283


BACKGROUND: Endothelial healing after deployment of cardiovascular devices is particularly important in the context of clinical outcome. It is therefore of great interest to develop tools for a precise prediction of endothelial growth after injury in the process of implant deployment. For experimental investigation of re-endothelialization in vitro cell migration assays are routinely used. However, semi-automatic analyses of live cell images are often based on gray value distributions and are as such limited by image quality and user dependence. The rise of deep learning algorithms offers promising opportunities for application in medical image analysis. Here, we present an intelligent cell detection (iCD) approach for comprehensive assay analysis to obtain essential characteristics on cell and population scale. RESULTS: In an in vitro wound healing assay, we compared conventional analysis methods with our iCD approach. Therefore we determined cell density and cell velocity on cell scale and the movement of the cell layer as well as the gap closure between two cell monolayers on population scale. Our data demonstrate that cell density analysis based on deep learning algorithms is superior to an adaptive threshold method regarding robustness against image distortion. In addition, results on cell scale obtained with iCD are in agreement with manually velocity detection, while conventional methods, such as Cell Image Velocimetry (CIV), underestimate cell velocity by a factor of 0.5. Further, we found that iCD analysis of the monolayer movement gave results just as well as manual freehand detection, while conventional methods again shows more frayed leading edge detection compared to manual detection. Analysis of monolayer edge protrusion by ICD also produced results, which are close to manual estimation with an relative error of 11.7%. In comparison, the conventional Canny method gave a relative error of 76.4%. CONCLUSION: The results of our experiments indicate that deep learning algorithms such as our iCD have the ability to outperform conventional methods in the field of wound healing analysis. The combined analysis on cell and population scale using iCD is very well suited for timesaving and high quality wound healing analysis enabling the research community to gain detailed understanding of endothelial movement.

Rastreamento de Células/métodos , Aprendizado Profundo , Cicatrização , Endotélio Vascular/citologia , Humanos
Biomed Tech (Berl) ; 64(3): 251-262, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-29933242


Bioresorbable scaffolds (BRS) promise to be the treatment of choice for stenosed coronary vessels. But higher thrombosis risk found in current clinical studies limits the expectations. Three hemodynamic metrics are introduced to evaluate the thrombosis risk of coronary stents/scaffolds using transient computational fluid dynamics (CFD). The principal phenomena are platelet activation and effective diffusion (platelet shear number, PSN), convective platelet transport (platelet convection number, PCN) and platelet aggregation (platelet aggregation number, PAN) were taken into consideration. In the present study, two different stent designs (thick-strut vs. thin-strut design) positioned in small- and medium-sized vessels (reference vessel diameter, RVD=2.25 mm vs. 2.70 mm) were analyzed. In both vessel models, the thick-strut design induced higher PSN, PCN and PAN values than the thin-strut design (thick-strut vs. thin-strut: PSN=2.92/2.19 and 0.54/0.30; PCN=3.14/1.15 and 2.08/0.43; PAN: 14.76/8.19 and 20.03/10.18 for RVD=2.25 mm and 2.70 mm). PSN and PCN are increased by the reduction of the vessel size (PSN: RVD=2.25 mm vs. 2.70 mm=5.41 and 7.30; PCN: RVD=2.25 mm vs. 2.70 mm=1.51 and 2.67 for thick-strut and thin-strut designs). The results suggest that bulky stents implanted in small caliber vessels may substantially increase the thrombosis risk. Moreover, sensitivity analyses imply that PSN is mostly influenced by vessel size (lesion-related factor), whereas PCN and PAN sensitively respond to strut-thickness (device-related factor).

Doença da Artéria Coronariana/cirurgia , Vasos Coronários/cirurgia , Implantes Absorvíveis , Doença da Artéria Coronariana/fisiopatologia , Hemodinâmica , Humanos , Stents , Trombose , Resultado do Tratamento
Biomed Microdevices ; 19(4): 78, 2017 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28844120


Within this paper we analyzed the technical feasibility of a novel microstent for glaucoma therapy. For lowering of intraocular pressure, the flexible polyurethane (PUR) implant is designed to drain aqueous humour from the anterior chamber of the eye into subconjunctival, or alternatively suprachoroidal, space. The microstent includes a biodegradable, flow resisting polymer membrane serving as temporary flow resistance for the prevention of early postoperative hypotony. A biodegradable local drug delivery (LDD)-device was designed to prevent fibrous encapsulation. Biodegradable components were made of flexible, nonwoven membranes of Poly(4-hydroxybutyrate) (P(4HB)). Polymer samples and microstent prototypes were manufactured by means of dip coating, electrospinning and femtosecond-laser micromachining and characterized in vitro with regard to structural and fluid mechanical properties, degradation behavior and drug release. Bending stiffness of PUR-tubing (62.53 ± 7.57 mN mm2) is comparable to conventional glaucoma drainage devices in a tube-plate design. Microstent prototypes yield a flow resistance of 2.4 ± 0.6 mmHg/µl min-1 which is close to the aspired value corresponding to physiological pressure (15 mmHg) and aqueous humour flow (2 µl min-1) conditions inside the eye. Degradation of electrospun P(4HB) specimens was found to be almost completely finished after six months in vitro. Within this time frame, flow capacity of the microstent increases, which is beneficial to compensate potentially increasing flow resistance of fibrous tissue in vivo. Fast drug release of the LDD-device was found. One microstent prototype was implanted into a porcine eye ex vivo. Future preclinical studies will allow further information about Microstent performance.

Implantes Absorvíveis , Implantes de Medicamento , Glaucoma/terapia , Teste de Materiais , Poliésteres , Stents , Animais , Implantes de Medicamento/química , Implantes de Medicamento/farmacologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Poliésteres/química , Poliésteres/farmacologia , Suínos