RESUMO
We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.
RESUMO
We demonstrate that oleyl phosphate ligand-stabilized iron oxide nanocubes as building blocks can be assembled into 2D supercrystalline mono- and multilayers on flat YSZ substrates within a few minutes using a simple spin-coating process. As a bottom-up process, the growth takes place in a layer-by-layer mode and therefore by tuning the spin-coating parameters, the exact number of deposited monolayers can be controlled. Furthermore, ex situ scanning electron and atomic force microscopy as well as X-ray reflectivity measurements give evidence that the choice of solvent allows the control of the lattice type of the final supercrystalline monolayers. This observation can be assigned to the different Hansen solubilities of the solvents used for the nanoparticle dispersion because it determines the size and morphology of the ligand shell surrounding the nanoparticle core. Here, by using toluene and chloroform as solvents, it can be controlled whether the resulting monolayers are ordered in a square or hexagonal supercrystalline lattice.
RESUMO
Three different platinum oxides are observed by in situ X-ray diffraction during electrochemical potential cycles of platinum thin film model electrodes on yttria-stabilized zirconia (YSZ) at a temperature of 702 K in air. Scanning electron microscopy and atomic force microscopy performed before and after the in situ electrochemical X-ray experiments indicate that approximately 20% of the platinum electrode has locally delaminated from the substrate by forming pyramidlike blisters. The oxides and their locations are identified as (1) an ultrathin PtOx at the buried Pt/YSZ interface, which forms reversibly upon anodic polarization; (2) polycrystalline ß-PtO2, which forms irreversibly upon anodic polarization on the inside of the blisters; and (3) an ultrathin α-PtO2 at the Pt/air interface, which forms by thermal oxidation and which does not depend on the electrochemical polarization. Thermodynamic and kinetic aspects are discussed to explain the coexistence of multiple phases at the same electrochemical conditions.
RESUMO
We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.
Assuntos
COVID-19 , SARS-CoV-2 , Adsorção , Proteínas , Glicoproteína da Espícula de Coronavírus , Titânio/químicaRESUMO
Carbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer-Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron-carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst's surface in relation to the reaction.
RESUMO
Characterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm. Furthermore, we discuss possibilities for both potentiostatic as well as potentiodynamic measurements, demonstrating the versatility of this technique. These different modes of operation, combined with the relatively simple experimental setup, make the combined rotating disk electrode-surface x-ray diffraction experiment a powerful technique for studying surface structures under operando electrocatalytic conditions.
RESUMO
Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking. Here, we explore the influence of the ligands on superlattice formation and during cross-linking via thermal annealing. We elucidate the effect of the surface functionalization on the nanostructure during self-assembly and show how the ligand-promoted superlattice changes subsequently alter the cross-linking behavior. By gaining further insights on the chemical species derived from the thermally activated cross-linking and its effect in the overall mechanical response, we identify an oxidative radical polymerization as the main mechanism responsible for the ligand cross-linking. In the cascade of reactions occurring during the surface-ligands polymerization, the nanocrystal core material plays a catalytic role, being strongly affected by the anchoring group of the surface ligands. Ultimately, we demonstrate how the found mechanistic insights can be used to adjust the mechanical and nanostructural properties of the obtained nanocomposites. These results enable engineering supercrystalline nanocomposites with improved cohesion while preserving their characteristic nanostructure, which is required to achieve the collective properties for broad functional applications.
RESUMO
We report on differences in the magnetite (111) surface structure when prepared under oxidizing and reducing conditions. Both preparations were done under UHV conditions at elevated temperatures, but in one case the sample was cooled down while keeping it in an oxygen atmosphere. Scanning tunneling microscopy after each of the preparations showed a different apparent morphology, which is discussed to be an electronic effect and which is reflected in the necessity of using opposite bias tunneling voltages in order to obtain good images. Surface x-ray diffraction revealed that both preparations lead to Fe vacancies, leading to local O-terminations, the relative fraction of which depending on the preparation. The preparation under reducing conditions lead to a larger fraction of Fe-termination. The geometric structure of the two different terminations was found to be identical for both treatments, even though the surface and near-surface regions exhibit small compositional differences; after the oxidizing treatment they are iron deficient. Further evidence for the dependence of iron vs oxygen fractional surface terminations on preparation conditions comes from Fourier transform infrared reflection-absorption spectroscopy, which is used to study the adsorption of formic acid. These molecules dissociate and adsorb in chelating and bidentate bridging geometries on the Fe-terminated areas and the signal of typical infrared absorption bands is stronger after the preparation under reducing conditions, which results in a higher fraction of Fe-termination. The adsorption of formic acid induced an atomic roughening of the magnetite (111) surface which we conclude from the quantitative analysis of the crystal truncation rod data. The roughening process is initiated by atomic hydrogen, which results from the dissociation of formic acid after its adsorption on the surface. Atomic hydrogen adsorbs at surface oxygen and after recombination with another H this surface hydroxyl can form H2O, which may desorb from the surface, while iron ions diffuse into interstitial sites in the bulk.
RESUMO
The microscopic understanding of the atomic structure and interaction at carboxylic acid/oxide interfaces is an important step towards tailoring the mechanical properties of nanocomposite materials assembled from metal oxide nanoparticles functionalized by organic molecules. We have studied the adsorption of oleic acid (C17H33COOH) on the most prominent magnetite (001) and (111) crystal facets at room temperature using low energy electron diffraction, surface X-ray diffraction and infrared vibrational spectroscopy complemented with molecular dynamics simulations used to infer specific hydrogen bonding motifs between oleic acid and oleate. Our experimental and theoretical results give evidence that oleic acid adsorbs dissociatively on both facets at lower coverages. At higher coverages, the more pronounced molecular adsorption causes hydrogen bond formation between the carboxylic groups, leading to a more upright orientation of the molecules on the (111) facet in conjunction with the formation of a denser layer, as compared to the (001) facet. This is evidenced by the C=O double bond infrared line shape, in depth molecular dynamics bond angle orientation and hydrogen bond analysis, as well as X-ray reflectivity layer electron density profile determination. Such a higher density can explain the higher mechanical strength of nanocomposite materials based on magnetite nanoparticles with larger (111) facets.
RESUMO
The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.
RESUMO
Niobium's superconducting properties are affected by the presence and precipitation of impurities in the near-surface region. A systematic wide-temperature range x-ray diffraction study is presented addressing the effect of low temperatures (108 K-130 K) and annealing treatments (523 K in nitrogen atmosphere, 400 K in UHV) on the near-surface region of a hydrogen-loaded Nb(100) single-crystal. Under these conditions, the response of the natural surface oxides (Nb2O5, NbO2, and NbO) and the changes in the subsurface concentration of interstitial species in Nb are explored, thereby including the cryogenic temperature regime relevant for device operation. The formation and suppression of niobium hydrides in such conditions are also investigated. These treatments are shown to result in: (i) an increase in the concentration of interstitial species (oxygen and nitrogen) occupying the octahedral sites of the Nb bcc lattice at room temperature, both in the near-surface region and in the bulk. (ii) A decrease in the concentration of interstitials within the first 10 nm from the surface at 130 K. (iii) Hydride formation suppression at temperatures as low as 130 K. These results show that mild annealing in nitrogen atmosphere can suppress the formation of superconducting-detrimental niobium hydrides, while subsurface interstitial atoms tend to segregate towards the surface at 130 K, therefore altering the local concentration of impurities within the RF penetration depth of Nb. These processes are discussed in the context of the improvement of niobium superconducting radio-frequency cavities for next-generation particle accelerators.
RESUMO
We report a novel heterogeneous adsorption mechanism of formic acid on the magnetite (111) surface. Our experimental results and density functional theory (DFT) calculations give evidence for dissociative adsorption of formic acid in quasibidentate and chelating geometries. The latter is induced by the presence of iron vacancies at the surface, making oxygen atoms accessible for hydrogen atoms from dissociated formic acid. DFT calculations predict that both adsorption geometries are energetically favorable under our experimental conditions. The calculations prove that the locally observed (â3 × â3)R 30° superstructure consists of three formate molecules in a triangular arrangement, adsorbed predominantly in a chelating geometry. The results show how defects can stabilize alternative adsorption geometries, which is a crucial ingredient for a detailed atomistic understanding of reaction barriers on magnetite and other oxide surfaces, as well as for the stability of carboxylic acid based nanocomposite materials.
RESUMO
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
RESUMO
Efficient hydrogen release from liquid organic hydrogen carriers (LOHCs) requires a high level of control over the catalytic properties of supported noble metal nanoparticles. Here, the formation of carbon-containing phases under operation conditions has a direct influence on the activity and selectivity of the catalyst. We studied the formation and stability of carbide phases using well-defined Pd/α-Al2O3(0001) model catalysts during dehydrogenation of a model LOHC, methylcyclohexane, in a flow reactor by in situ high-energy grazing incidence X-ray diffraction. The phase composition of supported Pd nanoparticles was investigated as a function of particle size and reaction conditions. Under operating conditions, we detected the formation of a PdxC phase followed by its conversion to Pd6C. The dynamic stability of the Pd6C phase results from the balance between uptake and release of carbon by the supported Pd nanoparticles in combination with the thermodynamically favorable growth of carbon deposits in the form of graphene. For small Pd nanoparticles (6 nm), the Pd6C phase is dynamically stable under low flow rate of reactants. At the high reactant flow, the Pd6C phase decomposes shortly after its formation due to the growth of graphene. Structural analysis of larger Pd nanoparticles (15 nm) reveals the formation and simultaneous presence of two types of carbides, PdxC and Pd6C. Formation and decomposition of Pd6C proceeds via a PdxC phase. After an incubation period, growth of graphene triggers the decomposition of carbides. The process is accompanied by segregation of carbon from the bulk of the nanoparticles to the graphene phase. Notably, nucleation of graphene is more favorable on bigger Pd nanoparticles. Our studies demonstrate that metastability of palladium carbides associated with dynamic formation and decomposition of the Pd6C and PdxC phases is an intrinsic phenomenon in LOHC dehydrogenation on Pd-based catalysts and strongly depends on particle size and reaction conditions.
RESUMO
We investigated the atomic structure of graphene supported Pd nanoclusters and their interaction with hydrogen up to atmospheric pressures at room temperature by surface X-ray diffraction and scanning tunneling microscopy. We find that Ir seeded Pd nanocluster superlattices with 1.2 nm cluster diameters can be grown on the graphene/Ir(111) moiré template with high structural perfection. The superlattice clusters are anchored through the rehybridized graphene to the Ir support, which superimposes a 2.0% inplane compression onto the clusters. During hydrogen exposure at 10 mbar pressure and room temperature, a significant part of the clusters gets unpinned from the superlattice. The clusters in registry undergo an out-of-plane expansion only, whereas the detached clusters expand in in- and out-of-plane directions. The formation of a hydrogen rich PdHx α' phase was not observed. After exposure to 1 bar, the majority of the clusters are unpinned from superlattice sites, due to their surface interaction with hydrogen and possible spill over to the graphene support. Only minor sintering was observed, which is more pronounced for the unpinned clusters. The results give evidence that ultrasmall Pd clusters on graphene are a stable hydrogen storage system with reduced hydrogen storage hysteresis and maintain a large surface area for hydrogen chemisorption.
RESUMO
The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts' dynamics. We report the facet-resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environmentdependent chemical composition. We find that the initially Pt-terminated nanoparticle surface gets Rh-enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent, and the Rh enrichment is nonreversible under subsequent CO reduction. Tracking facet-resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity, and lifetime.
RESUMO
From the catalytic, semiconducting, and optical properties of zinc oxide (ZnO) numerous potential applications emerge. For the physical and chemical properties of the surface, under-coordinated atoms often play an important role, necessitating systematic studies of their influence. Here we study the vicinal ZnO([Formula: see text]) surface, rich in under-coordinated sites, using a combination of several experimental techniques and density functional theory calculations. We determine the atomic-scale structure and find the surface to be a stable, long-range ordered, non-polar facet of ZnO, with a high step-density and uniform termination. Contrary to an earlier suggested nano-faceting model, a bulk termination fits much better to our experimental observations. The surface is further stabilized by dissociatively adsorbed H2O on adjacent under-coordinated O- and Zn-atoms. The stabilized surface remains highly active for water dissociation through the remaining under-coordinated Zn-sites. Such a vicinal oxide surface is a prerequisite for future adsorption studies with atomically controlled local step and terrace geometry.
RESUMO
Down to a cathodic potentials of -1.20 V versus the reversible hydrogen electrode, the structure of IrO2(110) electrodes supported by TiO2(110) is found to be stable by in situ synchrotron-based X-ray diffraction. Such high cathodic potentials should lead to reduction to metallic Ir (Pourbaix diagram). From the IrO2 lattice parameters, determined during cathodic polarization in a H2SO4 electrolyte solution (pH 0.4), it is estimated that the unit cell volume increases by 1% due likely to proton incorporation, which is supported by the lack of significant swelling of the IrO2(110) film derived from X-ray reflectivity experiments. Ex situ X-ray photoelectron spectroscopy suggests that protons are incorporated into the IrO2(110) lattice below -1.0 V, although Ir remains exclusively in the IV+ oxidation state down to -1.20 V. Obviously, further hydrogenation of the lattice oxygen of IrO2(110) toward water is suppressed for kinetic reasons and hints at a rate-determining chemical step that cannot be controlled by the electrode potential.
RESUMO
We investigate with in situ surface X-ray diffraction (SXRD) and X-ray reflectivity (XRR) experiments the cathodic stability of an ultrathin single-crystalline IrO2(110) film with a regular array of mesoscopic rooflike structures that is supported on a RuO2(110)/Ru(0001) template. It turns out that the planarity of the single-crystalline IrO2(110) film is lost in that IrO2(110) oxide domains delaminate at a cathodic potential of -0.18 V. Obviously, the electrolyte solution is able to reach the RuO2(110) layer presumably through the surface grain boundaries of the IrO2(110) layer. Subsequently, the single-crystalline RuO2(110) structure-directing template is reduced to amorphous hydrous RuO2, with the consequence that the IrO2(110) film loses partly its adhesion to the template. From in situ XRR experiments we find that the IrO2(110) film does not swell upon cathodic polarization down to -0.18 V, while from in situ SXRD experiments, the lattice constants of IrO2(110) are shown to be not affected. The rooflike mesostructure of the IrO2(110) flakes remains intact after cathodic polarization to -0.18 V, evidencing that the crystallinity of IrO2(110) is retained.