Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361832

RESUMO

In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (-13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications.


Assuntos
Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Soroalbumina Bovina/química , Proliferação de Células , Feminino , Humanos , Indóis/química , Luz , Simulação de Acoplamento Molecular , Nanopartículas/química , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Espectroscopia de Luz Próxima ao Infravermelho , Células Tumorais Cultivadas
2.
Biomater Sci ; 9(18): 6183-6202, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34346411

RESUMO

Among women, ovarian cancer is the fifth most frequent type of cancer, and despite benefiting from current standard treatment plans, 90% of patients relapse in the subsequent 18 months and, eventually, perish. As a result, via embracing nanotechnological advancements in the field of medical science, researchers working in the areas of cancer therapy and imaging are looking for the next breakthrough treatment strategy to ensure lower cancer recurrence rates and improved outcomes for patients. Herein, we design a novel phototheranostic agent with optical features in the biological window of the electromagnetic spectrum via encapsulating a newly synthesized phthalocyanine dye within biocompatible protein nanoparticles, allowing the targeted fluorescence imaging and synergistic dual therapy of ovarian cancer. The nanosized agent displays great biocompatibility and enhanced aqueous biostability and photothermal activity, as well as high reactive-oxygen-species generation efficiency. To achieve the active targeting of the desired malignant tissue and suppress the rapid clearance of the photosensitive agent from the peritoneal cavity, the nanoparticles are biofunctionalized with an anti-folate receptor antibody. A2780 ovarian cancer cells are employed to confirm the improved targeting capabilities and the in vitro cytotoxic efficiency of the theranostic nanoparticles after exposure to a 660 nm LED lamp; upon measurement via MTT and flow cytometry assays, a significant 95% decrease in the total number of viable cells is seen. Additionally, the therapeutic performance of our newly designed nanoparticles was evaluated in vivo, via real-time thermal monitoring and histopathological assays, upon the irradiation of tumour-bearing mice with a 660 nm LED lamp (0.05 W cm-2). Foremost, separately from steady-state fluorescence imaging, we found that, via utilizing FLIM investigations, the differences in fluorescence lifetimes of antibody biofunctionalized and non-functionalized nanoparticles can be correlated to different intracellular localization and internalization pathways of the fluorescent agent, which is relevant for the development of a cutting-edge method for the detection of cancer cells that overexpress folate receptors at their surfaces.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...