Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMJ ; 374: n1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470785

RESUMO

OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Exposição Ambiental/efeitos adversos , Doenças não Transmissíveis/mortalidade , Europa (Continente) , Humanos
2.
Int J Cancer ; 149(11): 1887-1897, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34278567

RESUMO

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 µm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 µg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 µg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.

3.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088754

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 µm (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 µg·m-3 for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5×10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Exposição Ambiental/análise , Europa (Continente) , Humanos , Incidência , Material Particulado/análise , Suécia
4.
Environ Health Perspect ; 129(4): 47009, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844598

RESUMO

BACKGROUND: Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤2.5 µm [fine particulate matter (PM2.5)] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES: We investigated the associations between long-term exposure to PM2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS: We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100×100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM2.5 mass and nitrogen dioxide (NO2) separately. RESULTS: We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM2.5 and NO2. HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng/m3, adjusting for PM2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION: Long-term exposure to V in PM2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.

5.
Environ Int ; 146: 106306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395948

RESUMO

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/efeitos adversos , Material Particulado/análise
6.
Environ Int ; 147: 106371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422970

RESUMO

BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Humanos , Material Particulado/análise
7.
Environ Res ; 193: 110568, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33278469

RESUMO

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Material Particulado/análise
8.
Environ Int ; 146: 106267, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276316

RESUMO

BACKGROUND: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent. OBJECTIVES: We examined the association between long-term exposure to low-level air pollution and COPD incidence. METHODS: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models. RESULTS: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 µg/m3 for PM2.5, 1.11 (1.06, 1.16) per 10 µg/m3 for NO2, and 1.11 (1.06, 1.15) per 0.5 10-5m-1 for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC. CONCLUSIONS: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Incidência , Material Particulado/análise , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Suécia
9.
Eur Respir J ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303534

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, while evidence is still insufficient. Within the multicentre project "Effects of Low-Level Air Pollution: A Study in Europe" (ELAPSE), we examined the associations of long-term exposures to particulate matter with diameter<2.5 µm (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) with asthma incidence in adults. METHODS: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders. RESULTS: Of 98 326 participants, 1965 developed asthma during a 16.6 years mean follow-up. We observed associations in fully adjusted models with hazard ratios and 95% confidence intervals of 1.22 (1.04-1.43) per 5 µg·m-3 for PM2.5, 1.17 (1.10-1.25) per 10 µg·m-3 for NO2, and 1.15 (1.08-1.23) per 0.5 10-5 m-1 for BC. Hazard ratios were larger in cohort subsets with exposure levels below the EU and US limit values and possibly WHO guidelines for PM2.5 and NO2. NO2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration response curves showed no evidence of a threshold. CONCLUSIONS: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.

10.
Environ Sci Technol ; 54(24): 15698-15709, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237771

RESUMO

We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 µm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Europa (Continente) , Modelos Lineares , Material Particulado/análise , Zinco/análise
11.
Glob Heart ; 15(1): 53, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32923347

RESUMO

Background: This paper presents a feasibility study of data linkage between global air pollution data and clinical medical data to assess the associations of PM2.5 with cardiovascular risk factors. Methods: Cardiovascular risk factor data were obtained from the SUrvey of Risk Factors (SURF) for coronary heart disease (CHD) patients from 10 countries in Europe, Asia, and the Middle-East. Annual average PM2.5 concentrations were estimated using recent global WHO PM2.5 maps combining satellite and surface monitoring data for the location of the 71 participating centers. Associations of PM2.5 with risk factors were assessed by mixed-effect generalized estimation equation models adjusted by sex, age, exercise, body mass index, and smoking. In the final model there was further adjustment for country. Results: Linkage between cardiovascular risk factor data and PM2.5 via the postal address of participating hospitals was shown to be feasible, however with several limitations noted.Eight thousand three hundred and ninety two patients (30% women) were included. Globally, an increase of 10 µg/m3 in PM2.5 was significantly associated with decreased BP and increased glucose. After controlling for country, an increase of 10 µg/m3 in PM2.5 was associated with decreased BP and increased LDL (SBP: -0.45 mmHg [95% CI: -0.85, -0.06]; DBP: -0.47 mmHg [-0.73, -0.20]; LDL: 0.04 mmol/L [0.01, 0.08]). The association with glucose attenuated (0.08 mmol/L [-0.23, 0.16]). Conclusion: It is feasible to link PM2.5 and cardiovascular risk factors but it is still challenging to interpret these observed associations due to unavailability of potential confounders. After country adjustment, PM2.5 was associated with small increases in LDL and small decreases in BP. Highlights: - There are limited studies on the association between air pollution and cardiovascular risk factors for patients with established coronary heart disease in low- and middle-income countries;- Data linkage is an efficient and cost-effective method to maximize the use of existing data to investigate more health related research questions;- It is feasible to determine global associations of air pollution and cardiovascular risk factors by data linkage but it is still challenging in terms of interpretation.

12.
Environ Health Perspect ; 128(2): 27005, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32074458

RESUMO

BACKGROUND: Air pollution has been related to brain structural alterations, but a relationship with white matter microstructure is unclear. OBJECTIVES: We assessed whether pregnancy and childhood exposures to air pollution are related to white matter microstructure in preadolescents. METHODS: We used data of 2,954 children from the Generation R Study, a population-based birth cohort from Rotterdam, Netherlands (2002-2006). Concentrations of 17 air pollutants including nitrogen oxides (NOX), particulate matter (PM), and components of PM were estimated at participants' homes during pregnancy and childhood using land-use regression models. Diffusion tensor images were obtained at child's 9-12 years of age, and fractional anisotropy (FA) and mean diffusivity (MD) were computed. We performed linear regressions adjusting for socioeconomic and lifestyle characteristics. Single-pollutant analyses were followed by multipollutant analyses using the Deletion/Substitution/Addition (DSA) algorithm. RESULTS: In the single-pollutant analyses, higher concentrations of several air pollutants during pregnancy or childhood were associated with significantly lower FA or higher MD (p<0.05). In multipollutant models of pregnancy exposures selected by DSA, higher concentration of fine particles was associated with significantly lower FA [-0.71 (95% CI: -1.26, -0.16) per 5 µg/m3 fine particles] and higher concentration of elemental silicon with significantly higher MD [0.06 (95% CI: 0.01, 0.11) per 100 ng/m3 silicon]. Multipollutant models of childhood exposures selected by DSA indicated significant associations of NOX with FA [-0.14 (95% CI: -0.23, -0.04) per 20-µg/m3 NOX increase], and of elemental zinc and the oxidative potential of PM with MD [0.03 (95% CI: 0.01, 0.04) per 10-ng/m3 zinc increase and 0.07 (95% CI: 0.00, 0.44) per 1-nmol DTT/min/m3 oxidative potential increase]. Mutually adjusted models of significant exposures during pregnancy and childhood indicated significant associations of silicon during pregnancy, and zinc during childhood, with MD. DISCUSSION: Exposure in pregnancy and childhood to air pollutants from tailpipe and non-tailpipe emissions were associated with lower FA and higher MD in white matter of preadolescents. https://doi.org/10.1289/EHP4709.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/estatística & dados numéricos , Substância Branca/química , Poluição do Ar , Criança , Feminino , Humanos , Masculino , Países Baixos , Óxidos de Nitrogênio , Material Particulado
13.
Sci Data ; 6: 190035, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30860500

RESUMO

Long-term exposure to air pollution is considered a major public health concern and has been related to overall mortality and various diseases such as respiratory and cardiovascular disease. Due to the spatial variability of air pollution concentrations, assessment of individual exposure to air pollution requires spatial datasets at high resolution. Combining detailed air pollution maps with personal mobility and activity patterns allows for an improved exposure assessment. We present high-resolution datasets for the Netherlands providing average ambient air pollution concentration values for the year 2009 for NO2, NOx, PM2.5, PM2.5absorbance and PM10. The raster datasets on 5×5 m grid cover the entire Netherlands and were calculated using the land use regression models originating from the European Study of Cohorts for Air Pollution Effects (ESCAPE) project. Additional datasets with nationwide and regional measurements were used to evaluate the generated concentration maps. The presented datasets allow for spatial aggregations on different scales, nationwide individual exposure assessment, and the integration of activity patterns in the exposure estimation of individuals.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental , Mapeamento Geográfico , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Países Baixos , Dióxido de Nitrogênio/análise , Material Particulado/análise
14.
Environ Int ; 120: 81-92, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30075373

RESUMO

BACKGROUND: In order to investigate associations between air pollution and adverse health effects consistent fine spatial air pollution surfaces are needed across large areas to provide cohorts with comparable exposures. The aim of this paper is to develop and evaluate fine spatial scale land use regression models for four major health relevant air pollutants (PM2.5, NO2, BC, O3) across Europe. METHODS: We developed West-European land use regression models (LUR) for 2010 estimating annual mean PM2.5, NO2, BC and O3 concentrations (including cold and warm season estimates for O3). The models were based on AirBase routine monitoring data (PM2.5, NO2 and O3) and ESCAPE monitoring data (BC), and incorporated satellite observations, dispersion model estimates, land use and traffic data. Kriging was performed on the residual spatial variation from the LUR models and added to the exposure estimates. One model was developed using all sites (100%). Robustness of the models was evaluated by performing a five-fold hold-out validation and for PM2.5 and NO2 additionally with independent comparison at ESCAPE measurements. To evaluate the stability of each model's spatial structure over time, separate models were developed for different years (NO2 and O3: 2000 and 2005; PM2.5: 2013). RESULTS: The PM2.5, BC, NO2, O3 annual, O3 warm season and O3 cold season models explained respectively 72%, 54%, 59%, 65%, 69% and 83% of spatial variation in the measured concentrations. Kriging proved an efficient technique to explain a part of residual spatial variation for the pollutants with a strong regional component explaining respectively 10%, 24% and 16% of the R2 in the PM2.5, O3 warm and O3 cold models. Explained variance at fully independent sites vs the internal hold-out validation was slightly lower for PM2.5 (65% vs 66%) and lower for NO2 (49% vs 57%). Predictions from the 2010 model correlated highly with models developed in other years at the overall European scale. CONCLUSIONS: We developed robust PM2.5, NO2, O3 and BC hybrid LUR models. At the West-European scale models were robust in time, becoming less robust at smaller spatial scales. Models were applied to 100 × 100 m surfaces across Western Europe to allow for exposure assignment for 35 million participants from 18 European cohorts participating in the ELAPSE study.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Modelos Estatísticos , Material Particulado/análise , Europa (Continente) , Análise Espaço-Temporal
15.
Sci Total Environ ; 639: 75-83, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29778684

RESUMO

BACKGROUND: Psychosocial research has shown that perceived exposure can influence symptom reporting, regardless of actual exposure. The impact of this phenomenon on the interpretation of results from epidemiological research on environmental determinants of symptoms is unclear. OBJECTIVE: Our aim was to compare associations between modeled exposures, the perceived level of these exposures and reported symptoms (non-specific symptoms, sleep disturbances, and respiratory symptoms) for three different environmental exposures (radiofrequency electromagnetic fields (RF-EMF), noise, and air pollution). These environmental exposures vary in the degree to which they can be sensorially observed. METHODS: Participant characteristics, perceived exposures, and self-reported health were assessed with a baseline (n = 14,829, 2011/2012) and follow-up (n = 7905, 2015) questionnaire in the Dutch population-based Occupational and Environmental Health Cohort (AMIGO). Environmental exposures were estimated at the home address using spatial models. Cross-sectional and longitudinal regression models were used to examine the associations between modeled and perceived exposures, and reported symptoms. RESULTS: The extent to which exposure sources could be observed by participants likely influenced correlations between modeled and perceived exposure as correlations were moderate for air pollution (rSp = 0.34) and noise (rSp = 0.40), but less so for RF-EMF (rSp = 0.11). Perceived exposures were consistently associated with increased symptom scores (respiratory, sleep, non-specific). Modeled exposures, except RF-EMF, were associated with increased symptom scores, but these associations disappeared or strongly diminished when accounted for perceived exposure in the analyses. DISCUSSION: Perceived exposure has an important role in symptom reporting. When environmental determinants of symptoms are studied without acknowledging the potential role of both modeled and perceived exposures, there is a risk of bias in health risk assessment. However, the etiological role of exposure perceptions in relation to symptom reporting requires further research.


Assuntos
Poluição do Ar/estatística & dados numéricos , Campos Eletromagnéticos , Exposição Ambiental/estatística & dados numéricos , Ruído , Opinião Pública , Ondas de Rádio , Estudos Transversais , Humanos
16.
Eur J Prev Cardiol ; 25(13): 1397-1405, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29688759

RESUMO

Background The food environment has been hypothesized to influence cardiovascular diseases such as hypertension and coronary heart disease. This study determines the relation between fast-food outlet density (FFD) and the individual risk for cardiovascular disease, among a nationwide Dutch sample. Methods After linkage of three national registers, a cohort of 2,472,004 adults (≥35 years), free from cardiovascular disease at January 1st 2009 and living at the same address for ≥15 years was constructed. Participants were followed for one year to determine incidence of cardiovascular disease, including coronary heart disease, stroke and heart failure. Street network-based buffers of 500 m, 1000 m and 3000 m around residential addresses were calculated, while FFD was determined using a retail outlet database. Logistic regression analyses were conducted. Models were stratified by degree of urbanization and adjusted for age, sex, ethnicity, marital status, comorbidity, neighbourhood-level income and population density. Results In urban areas, fully adjusted models indicated that the incidence of cardiovascular disease and coronary heart disease was significantly higher within 500 m buffers with one or more fast-food outlets as compared with areas with no fast-food outlets. An elevated FFD within 1000 m was associated with an significantly increased incidence of cardiovascular disease and coronary heart disease. Evidence was less pronounced for 3000 m buffers, or for stroke and heart-failure incidence. Conclusions Elevated FFD in the urban residential environment (≤1000 m) was related to an increased incidence of cardiovascular heart disease and coronary heart disease. To better understand how FFD is associated with cardiovascular disease, future studies should account for a wider range of lifestyle and environmental confounders than was achieved in this study.


Assuntos
Doenças Cardiovasculares/epidemiologia , Fast Foods/efeitos adversos , Estilo de Vida , Medição de Risco/métodos , Doenças Cardiovasculares/etiologia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Razão de Chances , Características de Residência , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo
17.
Environ Res ; 160: 531-540, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106952

RESUMO

INTRODUCTION: In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. OBJECTIVES: We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. METHODS: We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. RESULTS: The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. CONCLUSION: Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness.


Assuntos
Meio Ambiente , Exercício Físico , Sobrepeso/epidemiologia , Características de Residência , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Emigrantes e Imigrantes/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Sobrepeso/etnologia , Sobrepeso/etiologia , Adulto Jovem
18.
Health Place ; 49: 68-84, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227885

RESUMO

The aim of our study was to investigate the association between health enhancing and threatening, and social and physical aspects of the neighbourhood environment and general practitioner (GP) assessed morbidity of the people living there, in order to find out whether the effects of environmental characteristics add up or modify each other. We combined GP electronic health records with environmental data on neighbourhoods in the Netherlands. Cross-classified logistic multilevel models show the importance of taking into account several environmental characteristics and confounders, as social capital effects on the prevalence of morbidity disappear when other area characteristics are taken into account. Stratification by area socio-economic status, shows that the association between environmental characteristics and the prevalence of morbidity is stronger for people living in low SES areas. In low SES areas, green space seems to alleviate effects of air pollution on the prevalence of high blood pressure and diabetes, while the effects of green space and social capital reinforce each other.


Assuntos
Meio Ambiente , Clínicos Gerais , Morbidade/tendências , Características de Residência , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Registros Eletrônicos de Saúde , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Países Baixos , Capital Social , Fatores Socioeconômicos , Adulto Jovem
19.
Environ Int ; 108: 228-236, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28886416

RESUMO

BACKGROUND: The evidence from observational epidemiological studies of a link between long-term air pollution exposure and diabetes prevalence and incidence is currently mixed. Some studies found the strongest associations of diabetes with fine particles, other studies with nitrogen dioxide and some studies found no associations. OBJECTIVES: Our aim was to investigate associations between long-term exposure to multiple air pollutants and diabetes prevalence in a large national survey in the Netherlands. METHODS: We performed a cross-sectional analysis using the 2012 Dutch national health survey to investigate the associations between the 2009 annual average concentrations of multiple air pollutants (PM10, PM2.5, PM10-2.5, PM2.5 absorbance, OPDTT, OPESR and NO2) and diabetes prevalence, among 289,703 adults. Air pollution exposure was assessed by land use regression models. Diabetes was defined based on a combined measure of self-reported physician diagnosis and medication prescription from an external database. Using logistic regression, we adjusted for potential confounders, including neighborhood- and individual socio-economic status and lifestyle-related risk factors such as smoking habits, alcohol consumption, physical activity and BMI. RESULTS: After adjustment for potential confounders, all pollutants (except PM2.5) were associated with diabetes prevalence. In two-pollutant models, NO2 and OPDTT remained associated with increased diabetes prevalence. For NO2 and OPDTT, single-pollutant ORs per interquartile range were 1.07 (95% CI: 1.05, 1.09) and 1.08 (95% CI: 1.05, 1.10), respectively. Stratified analysis showed no consistent effect modification by any of the included known diabetes risk factors. CONCLUSIONS: Long-term residential air pollution exposure was associated with diabetes prevalence in a large health survey in the Netherlands, strengthening the evidence of air pollution being an important diabetes risk factor. Most consistent associations were observed for NO2 and oxidative potential of PM2.5 measured by the DTT assay. The finding of an association with the oxidative potential of fine particles but not with PM2.5, suggests that particle composition may be important for a potential effect on diabetes.


Assuntos
Poluentes Atmosféricos/análise , Diabetes Mellitus/epidemiologia , Exposição Ambiental , Dióxido de Nitrogênio/análise , Material Particulado/análise , Adulto , Idoso , Estudos Transversais , Diabetes Mellitus/etiologia , Exposição Ambiental/análise , Feminino , Inquéritos Epidemiológicos , Humanos , Incidência , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Países Baixos , Oxirredução , Prevalência , Fatores de Risco , Classe Social , Adulto Jovem
20.
Environ Res ; 156: 364-373, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28395240

RESUMO

BACKGROUND: Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. OBJECTIVES: Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. METHODS: We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM10, PM2.5, PM2.5-10, PM2.5 absorbance, OPDTT, OPESR and NO2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. RESULTS: Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. CONCLUSIONS: Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Estilo de Vida , Mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estilo de Vida/etnologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Material Particulado/análise , Medição de Risco , Classe Social , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...