Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(22): 227401, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889631

RESUMO

Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.

2.
Science ; 372(6545): 973-977, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045352

RESUMO

Quantum criticality may be essential to understanding a wide range of exotic electronic behavior; however, conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power-law behavior of thermodynamic quantities as a function of a nonthermal tuning parameter close to the quantum critical point (QCP). Here, we observed power-law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of iron-based superconductors, providing direct evidence of quantum critical nematic fluctuations in this material. These quantum critical fluctuations are not confined within a narrow regime around the QCP but rather extend over a wide range of temperatures and compositions.

3.
Rev Sci Instrum ; 89(10): 103901, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399873

RESUMO

Elastoresistivity, the relation between resistivity and strain, can elucidate the subtle properties of the electronic structure of a material and is an increasingly important tool for the study of strongly correlated materials. To date, elastoresistivity measurements have predominantly been performed with quasi-static (DC) strain. In this work, we demonstrate a method using AC strain in elastoresistivity measurements. A sample experiencing AC strain has a time-dependent resistivity, which modulates the voltage produced by an AC current; this effect produces time-dependent variations in resistivity that are directly proportional to the elastoresistivity, and which can be measured more quickly, with less strain on the sample, and with less stringent requirements for temperature stability than the previous DC technique. Example measurements between 10 Hz and 3 kHz are performed on a material with a large, well-characterized and temperature dependent elastoresistivity: the representative iron-based superconductor Ba(Fe0.975Co0.025)2As2. These measurements yield a frequency independent elastoresistivity and reproduce results from previous DC elastoresistivity methods to within experimental accuracy. We emphasize that the dynamic (AC) elastoresistivity is a distinct material-specific property that has not previously been considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...