Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Int J Chron Obstruct Pulmon Dis ; 14: 2015-2025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564849

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a systemic condition that is too complex to be assessed by lung function alone. Metabolomics has the potential to help understand the mechanistic underpinnings that contribute to COPD pathogenesis. Since blood metabolomics may be affected by sex and body mass index (BMI), the aim of this study was to determine the metabolomic variability in male smokers with and without COPD who have a narrow BMI range. Methods: We compared the quantitative proton nuclear magnetic resonance acquired serum metabolomics of a male Chinese Han population of non-smokers without COPD, and smokers with and without COPD. We also assessed the impact of smoking status on metabolite concentrations and the associations between metabolite concentrations and inflammatory markers such as serum interleukin-6 and histamine, and blood cell differential (%). Metabolomics data were log-transformed and auto-scaled for parametric statistical analysis. Mean normalized metabolite concentration values and continuous demographic variables were compared by Student's t-test with Welch correction or ANOVA with post-hoc Tukey's test, as applicable; t-test p-values for metabolomics data were corrected for false discovery rate (FDR). A Pearson association matrix was built to evaluate the relationship between metabolite concentrations, clinical parameters and markers of inflammation. Results: Twenty-eight metabolites were identified and quantified. Creatine, glycine, histidine, and threonine concentrations were reduced in COPD patients compared to non-COPD smokers (FDR ≤15%). Concentrations of these metabolites were inversely correlated with interleukin-6 levels. COPD patients had overall dampening of metabolite concentrations including energy-related metabolic pathways such as creatine metabolism. They also had higher histamine levels and percent basophils compared to smokers without COPD. Conclusion: COPD is associated with alterations in the serum metabolome, including a disruption in the histidine-histamine and creatine metabolic pathways. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in COPD.Trial registration www.clinicaltrials.gov, NCT03310177.

2.
Sci Rep ; 9(1): 11367, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388056

RESUMO

Metabolomics is an emerging science that can inform pathogenic mechanisms behind clinical phenotypes in COPD. We aimed to understand disturbances in the serum metabolome associated with respiratory outcomes in ever-smokers from the SPIROMICS cohort. We measured 27 serum metabolites, mostly amino acids, by 1H-nuclear magnetic resonance spectroscopy in 157 white ever-smokers with and without COPD. We tested the association between log-transformed metabolite concentrations and one-year incidence of respiratory exacerbations after adjusting for age, sex, current smoking, body mass index, diabetes, inhaled or oral corticosteroid use, study site and clinical predictors of exacerbations, including FEV1% predicted and history of exacerbations. The mean age of participants was 53.7 years and 58% had COPD. Lower concentrations of serum amino acids were independently associated with 1-year incidence of respiratory exacerbations, including tryptophan (ß = -4.1, 95% CI [-7.0; -1.1], p = 0.007) and the branched-chain amino acids (leucine: ß = -6.0, 95% CI [-9.5; -2.4], p = 0.001; isoleucine: ß = -5.2, 95% CI [-8.6; -1.8], p = 0.003; valine: ß = -4.1, 95% CI [-6.9; -1.4], p = 0.003). Tryptophan concentration was inversely associated with the blood neutrophil-to-lymphocyte ratio (p = 0.03) and the BODE index (p = 0.03). Reduced serum amino acid concentrations in ever-smokers with and without COPD are associated with an increased incidence of respiratory exacerbations.

3.
Analyst ; 144(12): 3790-3799, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116195

RESUMO

Herein we report the development of a cytometric analysis platform for measuring the contents of individual cells in absolute (picogram) scales; this study represents the first report of Raman-based quantitation of the absolute mass - or the total amount - of multiple endogenous biomolecules within single-cells. To enable ultraquantitative calibration, we engineered single-cell-sized micro-calibration standards of known composition by inkjet-printer deposition of biomolecular components in microarrays across the surface of silicon chips. We demonstrate clinical feasibility by characterizing the compositional phenotype of human skin fibroblast and porcine alveolar macrophage cell populations in the respective contexts of Niemann-Pick disease and drug-induced phospholipidosis: two types of lipid storage disorders. We envision this microanalytical platform as the foundation for many future biomedical applications, ranging from diagnostic assays to pathological analysis to advanced pharmaco/toxicokinetic research studies.

4.
J Proteome Res ; 18(5): 2004-2011, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30895797

RESUMO

l-Carnitine is a candidate therapeutic for the treatment of septic shock, a condition that carries a ≥40% mortality. Responsiveness to l-carnitine may hinge on unique metabolic profiles that are not evident from the clinical phenotype. To define these profiles, we performed an untargeted metabolomic analysis of serum from 21 male sepsis patients enrolled in a placebo-controlled l-carnitine clinical trial. Although treatment with l-carnitine is known to induce changes in the sepsis metabolome, we found a distinct set of metabolites that differentiated 1-year survivors from nonsurvivors. Following feature alignment, we employed a new and innovative data reduction strategy followed by false discovery correction, and identified 63 metabolites that differentiated carnitine-treated 1-year survivors versus nonsurvivors. Following identification by MS/MS and database search, several metabolite markers of vascular inflammation were determined to be prominently elevated in the carnitine-treated nonsurvivor cohort, including fibrinopeptide A, allysine, and histamine. While preliminary, these results corroborate that metabolic profiles may be useful to differentiate l-carnitine treatment responsiveness. Furthermore, these data show that the metabolic signature of l-carnitine-treated nonsurvivors is associated with a severity of illness (e.g., vascular inflammation) that is not routinely clinically detected.

5.
Pharm Res ; 36(1): 3, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30406478

RESUMO

PURPOSE: Drug-induced liver injuries (DILI) comprise a significant proportion of adverse drug reactions leading to hospitalizations and death. One frequent DILI is granulomatous inflammation from exposure to harmful metabolites that activate inflammatory pathways of immune cells of the liver, which may act as a barrier to isolate the irritating stimulus and limit tissue damage. METHODS: Paralleling the accumulation of CFZ precipitates in the liver, granulomatous inflammation was studied to gain insight into its effect on liver structure and function. A structural analog that does not precipitate within macrophages was also studied using micro-analytical approaches. Depleting macrophages was used to inhibit granuloma formation and assess its effect on drug bioaccumulation and toxicity. RESULTS: Granuloma-associated macrophages showed a distinct phenotype, differentiating them from non-granuloma macrophages. Granulomas were induced by insoluble CFZ cargo, but not by the more soluble analog, pointing to precipitation being a factor driving granulomatous inflammation. Granuloma-associated macrophages showed increased activation of lysosomal master-regulator transcription factor EB (TFEB). Inhibiting granuloma formation increased hepatic necrosis and systemic toxicity in CFZ-treated animals. CONCLUSIONS: Granuloma-associated macrophages are a specialized cell population equipped to actively sequester and stabilize cytotoxic chemotherapeutic agents. Thus, drug-induced granulomas may function as drug sequestering "organoids" -an induced, specialized sub-compartment- to limit tissue damage.

6.
Pharmaceutics ; 10(4)2018 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-30453628

RESUMO

Clofazimine (CFZ) is a broad spectrum antimycobacterial agent recommended by the World Health Organization as a first line treatment for leprosy and second line treatment for multidrug resistant tuberculosis. Oral administration of CFZ leads to a red skin pigmentation side effect. Since CFZ is a weakly basic, red phenazine dye, the skin pigmentation side effect results from lipophilic partitioning of the circulating, free base (neutral) form of CFZ into the skin. Here, we developed a stable and biocompatible formulation of CFZ-HCl microcrystals that mimics the predominant form of the drug that bioaccumulates in macrophages, following long term oral CFZ administration. In mice, intravenous injection of these biomimetic CFZ-HCl microcrystals led to visible drug accumulation in macrophages of the reticuloendothelial system with minimal skin accumulation or pigmentation. In fact, no skin pigmentation was observed when the total amount of CFZ-HCl administered was equivalent to the total oral dose leading to maximal skin pigmentation. Thus, parenteral (injected or inhaled) biomimetic formulations of CFZ-HCl could be instrumental to avoid the pigmentation side effect of oral CFZ therapy.

7.
Pharm Res ; 36(1): 12, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421091

RESUMO

PURPOSE: Clofazimine (CFZ) is an FDA-approved, poorly soluble small molecule drug that precipitates as crystal-like drug inclusions (CLDIs) which accumulate in acidic cytoplasmic organelles of macrophages. In this study, we considered CLDIs as an expandable mechanopharmaceutical device, to study how macrophages respond to an increasingly massive load of endophagolysosomal cargo. METHODS: First, we experimentally tested how the accumulation of CFZ in CLDIs impacted different immune cell subpopulations of different organs. Second, to further investigate the mechanism of CLDI formation, we asked whether specific accumulation of CFZ hydrochloride crystals in lysosomes could be explained as a passive, thermodynamic equilibrium phenomenon. A cellular pharmacokinetic model was constructed, simulating CFZ accumulation driven by pH-dependent ion trapping of the protonated drug in the acidic lysosomes, followed by the precipitation of CFZ hydrochloride salt via a common ion effect caused by high chloride concentrations. RESULTS: While lower loads of CFZ were mostly accommodated in lung macrophages, increased CFZ loading was accompanied by organ-specific changes in macrophage numbers, size and intracellular membrane architecture, maximizing the cargo storage capabilities. With increasing loads, the total cargo mass and concentrations of CFZ in different organs diverged, while that of individual macrophages converged. The simulation results support the notion that the proton and chloride ion concentrations of macrophage lysosomes are sufficient to drive the massive, cell type-selective accumulation and growth of CFZ hydrochloride biocrystals. CONCLUSION: CLDIs effectively function as an expandable mechanopharmaceutical device, revealing the coordinated response of the macrophage population to an increasingly massive, whole-organism endophagolysosomal cargo load.

8.
Pharm Res ; 36(1): 2, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402713

RESUMO

PURPOSE: To improve cytometric phenotyping abilities and better understand cell populations with high interindividual variability, a novel Raman-based microanalysis was developed to characterize macrophages on the basis of chemical composition, specifically to measure and characterize intracellular drug distribution and phase separation in relation to endogenous cellular biomolecules. METHODS: The microanalysis was developed for the commercially-available WiTec alpha300R confocal Raman microscope. Alveolar macrophages were isolated and incubated in the presence of pharmaceutical compounds nilotinib, chloroquine, or etravirine. A Raman data processing algorithm was specifically developed to acquire the Raman signals emitted from single-cells and calculate the signal contributions from each of the major molecular components present in cell samples. RESULTS: Our methodology enabled analysis of the most abundant biochemicals present in typical eukaryotic cells and clearly identified "foamy" lipid-laden macrophages throughout cell populations, indicating feasibility for cellular lipid content analysis in the context of different diseases. Single-cell imaging revealed differences in intracellular distribution behavior for each drug; nilotinib underwent phase separation and self-aggregation while chloroquine and etravirine accumulated primarily via lipid partitioning. CONCLUSIONS: This methodology establishes a versatile cytometric analysis of drug cargo loading in macrophages requiring small numbers of cells with foreseeable applications in toxicology, disease pathology, and drug discovery.

9.
Breast Cancer Res Treat ; 171(3): 657-666, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29946863

RESUMO

PURPOSE: Approximately 25% of breast cancer patients experience treatment delays or discontinuation due to paclitaxel-induced peripheral neuropathy (PN). Currently, there are no predictive biomarkers of PN. Pharmacometabolomics is an informative tool for biomarker discovery of drug toxicity. We conducted a secondary whole blood pharmacometabolomics analysis to assess the association between pretreatment metabolome, early treatment-induced metabolic changes, and the development of PN. METHODS: Whole blood samples were collected pre-treatment (BL), just before the end of the first paclitaxel infusion (EOI), and 24 h after the first infusion (24H) from sixty patients with breast cancer receiving (80 mg/m2) weekly treatment. Neuropathy was assessed at BL and prior to each infusion using the sensory subscale (CIPN8) of the EORTC CIPN20 questionnaire. Blood metabolites were quantified from 1-D-1H-nuclear magnetic resonance spectra using Chenomx® software. Metabolite concentrations were normalized in preparation for Pearson correlation and one-way repeated measures ANOVA with multiple comparisons corrected by false discovery rate (FDR). RESULTS: Pretreatment histidine, phenylalanine, and threonine concentrations were inversely associated with maximum change in CIPN8 (ΔCIPN8) (p < 0.02; FDR ≤ 25%). Paclitaxel caused a significant change in concentrations of 2-hydroxybutyrate, 3-hydroxybutyrate, pyruvate, o-acetylcarnitine, and several amino acids from BL to EOI and/or 24H (p < 0.05; FDR ≤ 25%), although these changes were not associated with ΔCIPN8. CONCLUSIONS: Whole blood metabolomics is a feasible approach to identify potential biomarker candidates of paclitaxel-induced PN. The findings suggest that pretreatment concentrations of histidine, phenylalanine, and threonine may be predictive of the severity of future PN and paclitaxel-induced metabolic changes may be related to disruption of energy homeostasis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metabolômica , Paclitaxel/administração & dosagem , Doenças do Sistema Nervoso Periférico/sangue , Adulto , Idoso , Biomarcadores/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Feminino , Histidina/sangue , Humanos , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Fenilalanina/sangue , Treonina/sangue
10.
Pharmacotherapy ; 38(6): 638-650, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29722909

RESUMO

STUDY OBJECTIVE: Patients with schizophrenia are known to have higher rates of metabolic disease than the general population. Contributing factors likely include lifestyle and atypical antipsychotic (AAP) use, but the underlying mechanisms are unknown. The objective of this study was to identify metabolomic variability in adult patients with schizophrenia who were taking AAPs and grouped by fasting insulin concentration, our surrogate marker for metabolic risk. DESIGN: Metabolomics analysis PARTICIPANTS: Ninety-four adult patients with schizophrenia who were taking an AAP for at least 6 months, with no changes in their antipsychotic regimen for the previous 8 weeks, and who did not require treatment with insulin, participated in the study. Twenty age- and sex-matched nonobese (10 subjects) and obese (10 subjects) controls without cardiovascular disease or mental health diagnoses were used to match the body mass index (BMI) range of the patients with schizophrenia to account for metabolite concentration differences attributable to BMI. MEASUREMENTS AND MAIN RESULTS: Existing serum samples were used to identify aqueous metabolites (to differentiate fasting insulin concentration quartiles) and fatty acids with quantitative nuclear magnetic resonance and gas chromatography methods, respectively. To exclude metabolites from our pathway mapping analysis that were due to variability in weight, we also subjected serum samples from the nonobese and obese controls to the same analyses. Patients with schizophrenia had a median age of 47.0 years (interquartile range 41.0-52.0 years). Using a false discovery rate threshold of less than 25%, 10 metabolites, not attributable to weight, differentiated insulin concentration quartiles in patients with schizophrenia and identified variability in one-carbon metabolism between groups. Patients with higher fasting insulin concentrations (quartiles 3 and 4) also trended toward higher levels of saturated fatty acids compared with patients with lower fasting insulin concentrations (quartiles 1 and 2). CONCLUSION: Our results illustrate the utility of metabolomics to identify pathways underlying variable fasting insulin concentration in patients with schizophrenia. Importantly, no significant difference in AAP exposure was observed among groups, suggesting that current antipsychotic use may not be a primary factor that differentiates middle-aged adult patients with schizophrenia by fasting insulin concentration.

11.
Respir Res ; 19(1): 60, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636049

RESUMO

BACKGROUND: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. METHODS: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. RESULTS: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. CONCLUSIONS: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Metaboloma/fisiologia , Síndrome do Desconforto Respiratório do Adulto/sangue , Síndrome do Desconforto Respiratório do Adulto/mortalidade , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Lipídeos/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Estudos Prospectivos , Síndrome do Desconforto Respiratório do Adulto/genética
12.
Sci Rep ; 8(1): 2934, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440773

RESUMO

Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions - "CLDIs") in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pHmax of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment. Most importantly, in vitro and in silico studies revealed that high expression levels of the vacuolar ATPase (V-ATPase), irrespective of the expression levels of chloride channels, are necessary and sufficient to explain the cell-type dependent formation, stabilization, and biocompatibility of the self-assembled mechanopharmaceutical device within macrophages.

13.
Shock ; 49(4): 412-419, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29384504

RESUMO

INTRODUCTION: Sepsis-induced metabolic disturbances include hyperlactatemia, disruption of glycolysis, protein catabolism, and altered fatty acid metabolism. It may also lower serum L-carnitine that supports the use of L-carnitine supplementation as a treatment to ameliorate several of these metabolic consequences. METHODS: To further understand the association between L-carnitine-induced changes in serum acylcarnitines, fatty acid metabolism and survival, serum samples from (T0), 12 hfollowing completion (T24) of L-carnitine (n = 16) or placebo (n = 15) administration, and 48 h (T48) after enrollment from patients with septic shock enrolled in a randomized control trial were assayed for acylcarnitines, free fatty acids, and insulin. Data were analyzed comparing 1-year survivors and nonsurvivors within treatment groups. RESULTS: Mortality was 8 of 16 (50%) and 12 of 15 (80%) at 1 year for L-carnitine and placebo-treated patients, respectively. Free carnitine, C2, C3, and C8 acylcarnitines were higher among nonsurvivors at enrollment. L-Carnitine treatment increased levels of all measured acylcarnitines; an effect that was sustained for at least 36 h following completion of the infusion and was more prominent among nonsurvivors. Several fatty acids followed a similar, though less consistent pattern. Glucose, lactate, and insulin levels did not differ based on survival or treatment arm. CONCLUSIONS: In human patients with septic shock, L-Carnitine supplementation increases a broad range of acylcarnitine concentrations that persist after cessation of infusion, demonstrating both immediate and sustained effects on the serum metabolome. Nonsurvivors demonstrate a distinct metabolic response to L-carnitine compared with survivors, which may indicate preexisting or more profound metabolic derangement that constrains any beneficial response to treatment.

14.
J Invest Dermatol ; 138(3): 697-703, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29042210

RESUMO

Clofazimine is a weakly basic, Food and Drug Administration-approved antibiotic recommended by the World Health Organization to treat leprosy and multi-drug-resistant tuberculosis. Upon prolonged treatment, clofazimine extensively bioaccumulates and precipitates throughout the organism, forming crystal-like drug inclusions (CLDIs). Due to the drug's red color, it is widely believed that clofazimine bioaccumulation results in skin pigmentation, its most common side effect. To test whether clofazimine-induced skin pigmentation is due to CLDI formation, we synthesized a closely related clofazimine analog that does not precipitate under physiological pH and chloride conditions that are required for CLDI formation. Despite the absence of detectable CLDIs in mice, administration of this analog still led to significant skin pigmentation. In clofazimine-treated mice, skin cryosections revealed no evidence of CLDIs when analyzed with a microscopic imaging system specifically designed for detecting clofazimine aggregates. Rather, the reflectance spectra of the skin revealed a signal corresponding to the soluble, free base form of the drug. Consistent with the low concentrations of clofazimine in the skin, these results suggest that clofazimine-induced skin pigmentation is not due to clofazimine precipitation and CLDI formation, but rather to the partitioning of the circulating, free base form of the drug into subcutaneous fat.

15.
Ann Am Thorac Soc ; 14(12): 1721-1743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29192815

RESUMO

This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.


Assuntos
Biomarcadores , Metabolômica/tendências , Proteômica/tendências , Colorado , Congressos como Assunto , Humanos , Pneumopatias/genética , Pneumopatias/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Sociedades Médicas , Biologia de Sistemas
16.
Pharmacotherapy ; 37(9): 1023-1032, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632924

RESUMO

The objective of this review is to explain the science of metabolomics-a science of systems biology that measures and studies endogenous small molecules (metabolites) that are present in a single biological sample-and its application to the diagnosis and treatment of sepsis. In addition, we discuss how discovery through metabolomics can contribute to the development of precision medicine targets for this complex disease state and the potential avenues for those new discoveries to be applied in the clinical environment. A nonsystematic literature review was performed focusing on metabolomics, pharmacometabolomics, and sepsis. Human (adult and pediatric) and animal studies were included. Metabolomics has been investigated in the diagnosis, prognosis, and risk stratification of sepsis, as well as for the identification of drug target opportunities. Metabolomics elucidates a new level of detail when compared with other systems biology sciences, with regard to the metabolites that are most relevant in the pathophysiology of sepsis, as well as highlighting specific biochemical pathways at work in sepsis. Metabolomics also highlights biochemical differences between sepsis survivors and nonsurvivors at a level of detail greater than that demonstrated by genomics, transcriptomics, or proteomics, potentially leading to actionable targets for new therapies. The application of pharmacometabolomics and its integration with other systems pharmacology to sepsis therapeutics could be particularly helpful in differentiating drug responders and nonresponders and furthering knowledge of mechanisms of drug action and response. The accumulated literature on metabolomics suggests it is a viable tool for continued discovery around the pathophysiology, diagnosis and prognosis, and treatment of sepsis in both adults and children, and it provides a greater level of biochemical detail and insight than other systems biology approaches. However, the clinical application of metabolomics in sepsis has not yet been fully realized. Prospective validation studies are needed to translate metabolites from the discovery phase into the clinical utility phase.


Assuntos
Metabolômica/tendências , Medicina de Precisão/tendências , Sepse/genética , Sepse/terapia , Adulto , Criança , Humanos , Metabolômica/métodos , Medicina de Precisão/métodos , Sepse/diagnóstico
17.
Pharmacotherapy ; 37(9): 1033-1042, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632946

RESUMO

Our objective was to illustrate the potential of metabolomics to identify novel biomarkers of illness severity in a child with fatal necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). We present a case report with two control groups and a metabolomics analysis: an infant with fatal MRSA pneumonia, four children with influenza pneumonia (pneumonia control group), and seven healthy children with no known infections (healthy control group). Urine samples were collected from all children. Metabolites were identified and quantified using 1 H-nuclear magnetic resonance spectrometry. Normalized metabolite concentration data from children with influenza pneumonia and healthy controls were compared by using an unpaired Student t test. To identify differentiating metabolites of MRSA pneumonia, the fold change of each metabolite was calculated by dividing each urine metabolite concentration of the patient with fatal MRSA pneumonia by the median urine concentration values of the same metabolite of the patients with influenza pneumonia and healthy controls, respectively. MetScape (http://metscape.ncibi.org/), a bioinformatics tool, was used for data visualization and interpretation. Urine metabolite concentrations previously identified as associated with sepsis in children (e.g., 3-hydroxybutyrate, carnitine, and creatinine) were higher in the patient with fatal MRSA pneumonia compared with those of patients with influenza pneumonia and healthy controls. The concentrations of additional metabolites-acetone, acetoacetate, choline, fumarate, glucose, and 3-aminoisobutyrate-were more than 25-fold higher in the patient with MRSA pneumonia than those of patients with influenza pneumonia and healthy controls. These metabolic changes in the urine preceded the clinical severe sepsis phenotype, suggesting that detection of the extent of metabolic disruption can aid in the early identification of a sepsis phenotype in advance of the clinical diagnosis. These data also support the utility of metabolomics for the development of clinical assays to identify patients with pediatric pneumonia at high risk for deterioration.


Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Pneumonia Necrosante/urina , Pneumonia Estafilocócica/urina , Sepse/urina , Índice de Gravidade de Doença , Biomarcadores/urina , Criança , Evolução Fatal , Feminino , Humanos , Lactente , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Pneumonia Necrosante/complicações , Pneumonia Necrosante/diagnóstico por imagem , Pneumonia Estafilocócica/complicações , Pneumonia Estafilocócica/diagnóstico por imagem , Sepse/complicações , Sepse/diagnóstico por imagem
18.
Biomed Opt Express ; 8(2): 860-872, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270989

RESUMO

Following prolonged administration, certain orally bioavailable but poorly soluble small molecule drugs are prone to precipitate out and form crystal-like drug inclusions (CLDIs) within the cells of living organisms. In this research, we present a quantitative multi-parameter imaging platform for measuring the fluorescence and polarization diattenuation signals of cells harboring intracellular CLDIs. To validate the imaging system, the FDA-approved drug clofazimine (CFZ) was used as a model compound. Our results demonstrated that a quantitative multi-parameter microscopy image analysis platform can be used to study drug sequestering macrophages, and to detect the formation of ordered molecular aggregates formed by poorly soluble small molecule drugs in animals.

19.
J Pharm Sci ; 106(4): 1162-1174, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007559

RESUMO

Prolonged (8 weeks) oral administration of clofazimine results in a profound pharmacodynamic response-bioaccumulation in macrophages (including Kupffer cells) as intracellular crystal-like drug inclusions (CLDIs) with an associated increase in interleukin-1 receptor antagonist production. Notably, CLDI formation in Kupffer cells concomitantly occurs with the formation of macrophage-centric granulomas. Accordingly, we sought to understand the impact of these events on host metabolism using 1H-nuclear magnetic resonance metabolomics. Mice received a clofazimine or vehicle-enriched (sham) diet for at least 8 weeks. At 2 weeks, the antimicrobial activity of clofazimine was evident by changes in urine metabolites. From 2 to 8 weeks, there was a striking change in metabolite levels indicative of a reorientation of host energy metabolism paralleling the onset of CLDI and granuloma formation. This was evidenced by a progressive reduction in urine levels of metabolites involved in one-carbon metabolism with corresponding increases in whole blood, and changes in metabolites associated with lipid, nucleotide and amino acid metabolism, and glycolysis. Although clofazimine-fed mice ate more, they gained less weight than control mice. Together, these results indicate that macrophage sequestration of clofazimine as CLDIs and granuloma formation is accompanied by a profound metabolic disruption in energy homeostasis and one-carbon metabolism.


Assuntos
Clofazimina/administração & dosagem , Clofazimina/metabolismo , Metabolismo Energético/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
J Vasc Surg Venous Lymphat Disord ; 4(2): 221-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26993871

RESUMO

OBJECTIVE: Age is a significant risk factor for the development of venous thrombosis (VT), but the mechanism(s) that underlie this risk remain(s) undefined and poorly understood. Aging is known to adversely influence inflammation and affect metabolism. Untargeted metabolomics permits an agnostic assessment of the physiological landscape and lends insight into the mechanistic underpinnings of clinical phenotypes. The objective of this exploratory study was to test the feasibility of a metabolomics approach for identifying potential metabolic mechanisms of age-related VT. METHODS: We subjected whole blood samples collected from young and old nonthrombosed controls and VT mice 2 days after thrombus induction using the electrolytic inferior vena cava, to a methanol:chloroform extraction and assayed the resulting aqueous fractions using 1D-(1)H- nuclear magnetic resonance. Normalized mouse metabolite data were compared across groups using analysis of variance (ANOVA) with Holm-Sidak post-testing. In addition, associations between metabolite concentrations and parameters of thrombosis such as thrombus and vein wall weights, and markers of inflammation, vein wall P- and E-selectin levels, were assessed using linear regression. The relatedness of the found significant metabolites was visually assessed using a bioinformatics tool, Metscape, which generates compound-reaction-enzyme-gene networks to aid in the interpretation of metabolomics data. RESULTS: Old mice with VT had a greater mean vein wall weight compared with young mice with VT (P < .05). Clot weight differences between old and young mice followed the same trend as vein wall weight (0.011 ± 0.04 g vs 0.008 ± 0.003 g; P = not significant). Glutamine (ANOVA, P < .01), proline (ANOVA, P < .01), and phenylalanine (ANOVA, P < .05) levels were increased in old VT mice compared with age-matched controls and young VT mice. Betaine and/or trimethylamine N-oxide levels were increased in aged mice compared with young animals. Vein wall weight was strongly associated with glutamine (P < .05), and phenylalanine (P < .01) concentrations and there was a trend toward an association with proline (P = .09) concentration. Vein wall P-selectin, but not E-selectin levels, were increased in old VT mice and were associated with the three found metabolites of age-related VT. Collectively, with the addition of glutamate, these metabolites form a single compound-reaction-enzyme-gene network that was generated by Metscape. CONCLUSIONS: We used 1D-(1)H-nuclear magnetic resonance-metabolite profiling to identify, for the first time, in an experimental model, three potential metabolites, glutamine, phenylalanine, and proline, associated with age-related VT. These metabolites are metabolically related and their levels are associated with vein wall weight and P-selectin concentrations. In aggregate, these findings provide a "roadmap" of pathways that could be interrogated in future studies, which could include provocation of the glutamine, phenylalanine, and proline pathways in the vein wall. This study introduces metabolomics as a new approach to furthering knowledge about the mechanisms of age-related VT.


Assuntos
Envelhecimento , Biomarcadores , Metabolômica , Trombose Venosa/metabolismo , Animais , Modelos Animais de Doenças , Espectroscopia de Ressonância Magnética , Camundongos , Selectina-P , Trombose , Fatores de Tempo , Veia Cava Inferior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA