Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 751
Filtrar
1.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566278

RESUMO

Exposure to particulate matter is a causative factor of dry eye disease. We aimed to investigate the beneficial effect of eye drops containing aucubin on dry eye disease induced by urban particulate matter (UPM). Dry eye was induced in male SD rats (6 weeks old) by topical exposure to UPM thrice a day for 5 d. Eye drops containing 0.1% aucubin or 0.5% aucubin were topically administered directly into the eye after UPM exposure for an additional 5 d. Tear secretion was evaluated using a phenol red thread tear test and corneal irregularity. The oxidative damage in the lacrimal gland was evaluated using TUNEL and immunohistochemical staining. The topical administration of aucubin significantly attenuated UPM-induced tear hyposecretion (control group: 9.25 ± 0.62 mm, UPM group: 4.55 ± 0.25 mm, 0.1% aucubin: 7.12 ± 0.58 mm, and 0.5% aucubin: 7.88 ± 0.75 mm) and corneal irregularity (control group: 0.00 ± 0.00, UPM group: 3.40 ± 0.29, 0.1% aucubin: 1.80 ± 0.27, and 0.5% aucubin: 1.15 ± 0.27). In addition, aucubin also reduced the UPM-induced apoptotic injury of lacrimal gland cells induced by oxidative stress through the increased expression of HMGB1 and RAGE. These findings indicate that the topical administration of aucubin eye drops showed a beneficial effect against UPM-induced abnormal ocular changes, such as tear hyposecretion and lacrimal gland damage. Therefore, our results reveal the pharmacological activities of aucubin in dry eye disease.

2.
Front Aging Neurosci ; 14: 881311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572148

RESUMO

Background: The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis: Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl-Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion: This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination: This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number: www.chictr.org.cn, identifier ChiCTR2100052590.

3.
J Environ Manage ; 316: 115155, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35561490

RESUMO

Landfilling and burning plastic waste, especially waste polyvinyl chloride (PVC), can produce highly toxic and carcinogenic by-products that threaten the ecosystem and human health. However, there is still a lack of proper methods for waste PVC recycling. Therefore, developing feasible ways for waste PVC recovery is urgently needed. The purpose of this study is to analyze the characteristics of PVC-based adsorptive nanofiber membranes and test their ability for the treatment of wastewater containing Cibacron Brilliant Yellow 3G-P, a widely used reactive dye. The polyethylenimine/polyvinyl chloride membrane (PEI/PVCM) was characterized by FTIR, FE-SEM, TGA, tensile analysis, water contact angle measurement, and zeta-potential analysis. The FTIR analysis confirmed that the PEI has successfully crosslinked with PVC. The FE-SEM images showed that the nanofibers constituting PEI/PVCM are compact with an average fiber diameter of 181 nm. The TGA results showed that the membrane was able to remain stable in wastewater below 150 °C. The average stress and strain of the PEI/PVCM were 7.64 ± 0.32 MPa and 934.14 ± 48.12%, respectively. The water contact angle and zeta potential analysis showed that after the introduction of PEI, the membrane converted from hydrophobic to hydrophilic, and the pHpzc was increased from 3.1 to 1.08. The pure water flux of the membrane was measured at 0.1 MPa and the result was 3013 ± 60 L/m2‧h. The wastewater purification capability of PEI/PVCM was measured at an initial dye concentration of 10 ppm and pH 4-9 at 0.1 MPa. The reusability of PEI/PVCM was verified through three adsorption-desorption cycles. The results demonstrated that the PEI/PVCM is a reusable membrane for efficient purification of wastewater containing reactive dyes over a wide pH range (pH 4-8).

4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563170

RESUMO

Marker-assisted selection enables breeders to quickly select excellent root architectural variations, which play an essential role in plant productivity. Here, ten root-related and shoot biomass traits of a new F6 recombinant inbred line (RIL) population were investigated under hydroponics and resulted in high heritabilities from 0.61 to 0.83. A high-density linkage map of the RIL population was constructed using a Brassica napus 50k Illumina single nucleotide polymorphism (SNP) array. A total of 86 quantitative trait loci (QTLs) explaining 4.16-14.1% of the phenotypic variances were detected and integrated into eight stable QTL clusters, which were repeatedly detected in different experiments. The codominant markers were developed to be tightly linked with three major QTL clusters, qcA09-2, qcC08-2, and qcC08-3, which controlled both root-related and shoot biomass traits and had phenotypic contributions greater than 10%. Among these, qcA09-2, renamed RT.A09, was further fine-mapped to a 129-kb interval with 19 annotated genes in the B. napus reference genome. By integrating the results of real-time PCR and comparative sequencing, five genes with expression differences and/or amino acid differences were identified as important candidate genes for RT.A09. Our findings laid the foundation for revealing the molecular mechanism of root development and developed valuable markers for root genetic improvement in rapeseed.

5.
Materials (Basel) ; 15(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407866

RESUMO

The microstructure and precipitate evolution of as-cast Mg-Nd alloys with different contents of Nd was investigated via experimental and simulation methods. The research showed that the as-cast microstructure of Mg-Nd alloy consisted of α-Mg dendrites and the intermetallic phases. A metastable ß phase precipitated, followed by α-Mg dendrites that could be confirmed as Mg12Nd by X-ray diffraction (XRD) analysis. The amount of ß-Mg12Nd presented a rising trend with increasing Nd additions. In addition, the tertiary phase was also observed in as-cast Mg-Nd alloy when Nd content was greater than 3 wt.%, which precipitated from the oversaturated α-Mg matrix. The tertiary phase should be ß1-Mg3Nd, which is also a metastable phase with a face-centered cubic lattice. However, it is a pity that the tertiary phase was not detected by the XRD technique. Moreover, an effective cellular automaton (CA) model was explored and applied to simulate the time-dependent α-Mg/ß1-Mg3Nd eutectic growth. The simulated results of α-Mg/ß1-Mg3Nd eutectic growth in Mg-3Nd presented that the growth of α-Mg dendrites was accompanied by the nucleation and growth of ß1-Mg3Nd precipitates and eventually formed a eutectic structure. The eutectic morphologies for Mg-Nd system alloys with different Nd contents were also simulated using the proposed model, and the results revealed that α-Mg dendrite was a refinement, and the amount of α-Mg/ß1-Mg3Nd eutectic was promoted, with increasing Nd content.

6.
Drug Des Devel Ther ; 16: 899-907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386851

RESUMO

Purpose: To clarify the protective effect and mechanism of salidroside (SLDS) on acute kidney injury (AKI) in septic rats. Methods: We pretreated rats with different doses of SLDS and analyzed the impact of SLDS on the survival of septic rats. We evaluated the levels of inflammatory factors in rats, the expression of NF-ƙB p65 in the kidney, and the apoptosis of kidney tubular epithelial cells (KTECs). Results: SLDS significantly decreased the mortality of septic rats, and it reduced the levels of TNF-α, IL-1ß, and IL-17A in plasma and kidneys and decreased the levels of serum creatinine, plasma renal injury molecule-1 and plasma neutrophil gelatin-associated lipocalin. Moreover, SLDS could significantly decrease the expression of NF-ƙB p65 in kidney tissues and the apoptotic number of KETCs, while reducing the mRNA levels of Caspase-3 and Bax mRNA, and increasing the level of Bcl-2 mRNA. Conclusion: SLDS pretreatment protects against AKI in septic rats by inhibiting the inflammation of kidney and the apoptosis of KTECs.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose , Glucosídeos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim , NF-kappa B/metabolismo , Fenóis , RNA Mensageiro/metabolismo , Ratos , Sepse/tratamento farmacológico , Sepse/metabolismo
7.
J Proteomics ; 261: 104582, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427800

RESUMO

Phosphorylation is an essential regulatory mechanism in cells that modifies diverse substrates, such as proteins, carbohydrates, lipids, and nucleotides. Protein phosphorylation regulates function, subcellular localization, and protein-protein interactions. Protein kinases and phosphatases catalyze this reversible mechanism, subsequently influencing signal transduction. The dysregulation of protein phosphorylation leads to many diseases, such as cancer, neurodegenerative diseases, and metabolic diseases. Therefore, analyzing the phosphorylation status and identifying protein phosphorylation sites are critical for elucidating the biological functions of specific phosphorylation events. Unraveling the critical phosphorylation events associated with diseases and specific signaling pathways is promising for drug discovery. To date, highly accurate and sensitive approaches have been developed to detect the phosphorylation status of proteins. In this review, we discuss the application of Phos-tag to elucidate the biological functions of Hippo pathway components, with emphasis on the identification and quantitation of protein phosphorylation under physiological and pathological conditions. SIGNIFICANCE: We here provide a comprehensive overview of Phos-tag technique-based strategies to identify phosphorylated proteins at the cellular level in the Hippo-YAP pathway that comprises a major driving force for cellular homeostasis. We clarify the links of applying Phos-tag in elucidating the biological functions of the Hippo pathway components with particular attention to the identification and quantitation of protein phosphorylation under physiological and pathological conditions. We believe that our paper will make a significant contribution to the literature because these detailed phosphorylation modifications and functional diversity of the Hippo pathway components in physiological and pathological processes are only beginning to come to the fore, highlighting the potential for discovering new therapeutic targets. Moreover, this line of research can provide further insight into the inextricable link between phos-tag applications as a molecular tool and cellular signaling modality, offering new directions for an integrated research program toward understanding cellular regulation at the molecular level. Given the broad research and practical applications, we believe that this paper will be of interest to the readership of your journal.

8.
Bioorg Med Chem ; 61: 116740, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396128

RESUMO

Human African trypanosomiasis is caused by a protozoan parasite Trypanosoma brucei majorly infecting people living in sub-Saharan Africa. Current limited available treatments suffer from drug resistance, severe adverse effects, low efficacy, and costly administrative procedures in African countries with limited medical resources. Therefore, there is always a perpetual demand for advanced drug development and invention of new strategies to combat the disease. Previous work in our lab generated a library of sulfonamide analogs as selective tubulin inhibitors, based on the structural difference between mammalian and trypanosome tubulin proteins. Further lead derivatization was performed in the current study and generated 25 potential drug candidates to improve the drug efficacy and uptake by selectively targeting the parasite's P2 membrane transporter protein with imidamide moiety. One of the newly synthesized analogs, compound 25 with a di-imidamide moiety, has shown greater potency with an IC50 of 1 nM to selectively inhibit the growth of trypanosome cells without affecting the viability of mammalian cells. Western blot analyses reveal that the compound suppressed tubulin polymerization in T. brucei cells. A detailed structure-activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Mamíferos/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
9.
J Med Virol ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474581

RESUMO

The rapidly spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains more than 30 mutations that mediate escape from antibody responses elicited by prior infection or current vaccines. Fortunately, T-cell responses are highly conserved in most individuals, but the impacts of mutations are not clear. Here, we showed that the T-cell responses of individuals who underwent booster vaccination with CoronaVac were largely protective against the SARS-CoV-2 Omicron spike protein. To specifically estimate the impact of Omicron mutations on vaccinated participants, 16 peptides derived from the spike protein of the ancestral virus or Omicron strain with mutations were used to stimulate peripheral blood mononuclear cells (PBMCs) from the volunteers. Compared with the administration of two doses of vaccine, booster vaccination substantially enhanced T-cell activation in response to both the ancestral and Omicron epitopes, although the enhancement was slightly weakened by the Omicron mutations. Then, the peptides derived from these spike proteins were used separately to stimulate PBMCs. Interestingly, compared with the ancestral peptides, only the peptides with the G339D or N440K mutation were detected to significantly destabilize the T-cell response. Although more participants need to be evaluated to confirm this conclusion, our study nonetheless estimates the impacts of mutations on T-cell responses to the SARS-CoV-2 Omicron variant.

10.
Soft Robot ; 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35483053

RESUMO

Transmission of electric signal among robots enables them to construct a team to behave beyond capabilities of the individuals. However, such a signal transmission is elusive so far for soft robots due to the employment of soft materials, rather than traditionally rigid electronic units. In this study, we demonstrate neuron-inspired soft robots (NISRs) with an electromagnetic induced signal transmission system. The prototype 15-cm-long NISRs can not only be moved driven by a manually moving magnet but also transmit signals to others in a noncontact type based on the electromagnetic induction through their tentacle units. Owing to the motion and special signal transmission mode, three NISRs can form diverse signal transport pathways to light up light emitting diodes in different positions. Furthermore, an alternative current (AC) signal can be generated when applying an interval loading/unloading compressive force with the velocity of 800 mm·min-1 on the head of NISR integrated a magnet and a coil (named it NISR-plus). Such an AC signal can be immediately sensed by neighboring NISRs, indicating the construction of a signal transmission network among the NISR team. Our results open perspectives to realize signal transmission of soft robots via wireless electromagnetic induction and favor the development of soft robot teams.

11.
Front Oncol ; 12: 872438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433425

RESUMO

Renal cell carcinoma (RCC), one of the most common genitourinary tumors, is induced by many factors, primarily smoking, obesity, and hypertension. As a non-acquired immunodeficiency syndrome (AIDS)-defining cancer, human immunodeficiency virus (HIV) may also play a critical role in the incidence and progression of RCC. It is evident that individuals who are infected with HIV are more likely than the general population to develop RCC. The age of RCC diagnosis among HIV-positive patients is younger than among HIV-negative individuals. However, many other characteristics remain unknown. With the increase in RCC incidence among HIV-infected patients, more research is being conducted to discover the relationship between RCC and HIV, especially with regard to HIV-induced immunodeficiency, diagnosis, and treatment. Unexpectedly, the majority of the literature suggests that there is no relationship between RCC and HIV-induced immunodeficiency. Nonetheless, differences in pathology, symptoms, or treatment in HIV-positive patients diagnosed with RCC are a focus. In this review, we summarize the association of RCC with HIV in terms of epidemiology, risk factors, diagnosis, and treatment.

12.
BMC Cancer ; 22(1): 411, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421932

RESUMO

BACKGROUND: To investigate the mechanism by which apolipoprotein A1 (APOA1) enhances the resistance of cervical squamous carcinoma to platinum-based chemotherapy. METHODS: Two cervical squamous carcinoma cell lines (SiHa and Caski) overexpressing APOA1 were constructed, treated with carboplatin, and compared to normal control cells. RESULTS: In both SiHa and Caski cell lines, the clone-forming ability of CBP-treated cells was lower than that of untreated cells, and the change in the number of clones of overexpressing cells was lower than that of normal control cells (p < 0.05), indicating that APOA1 overexpression enhanced chemoresistance. A screen for APOA1 downstream proteins affecting platinum-based chemoresistance using Tandem Mass Tag revealed 64 differentially expressed proteins in SiHa cells, which were subjected to Gene Ontology (annotation, Kyoto Encyclopedia of Genes and Genomes enrichment, subcellular localization, structural domain annotation and enrichment, clustering, and interaction network analyses. Sixty-four differentially expressed proteins matching cancer-relavent association terms were screened and parallel response monitoring identified 29 proteins as possibly involved in the mechanism of platinum-based chemoresistance. CONCLUSIONS: Our analysis suggested that the mechanism may involve numerous regulatory pathways, including promoting tumor growth via the p38 MAPK signaling pathway through STAT1, promoting tumor progression via the PI3K signaling pathway through CD81 and C3, and promoting resistance to platinum-based chemotherapy resistance through TOP2A. The present study aimed to preliminarily explore the function and mechanism of APOA1 in platinum-based chemoresistance in cervical cancer, and the detailed mechanism needs to be further studied.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Apolipoproteína A-I/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Feminino , Humanos , Fosfatidilinositol 3-Quinases , Platina/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
13.
Adv Mater ; : e2200750, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385149

RESUMO

Polyaryletherketone (PAEK) is emerging as an important high-performance polymer material in additive manufacturing (AM) benefiting from its excellent mechanical properties, good biocompatibility, and high-temperature stability. The distinct advantages of AM facilitate the rapid development of PAEK products with complex customized structures and functionalities, thereby enhancing their applications in various fields. Herein, a comprehensive review of the recent advances on AM of high-performance PAEKs is provided, concerning the materials properties, AM processes, mechanical properties, and potential applications of additively manufactured PAEKs. It begins with the introduction of fundamentals of AM and PAEKs, as well as the advantages of AM of PAEKs. Discussions are then presented on the material properties, AM processes, processing-matter coupling mechanism, thermal conductivity, crystallization characteristics, and microstructures of AM processed PAEKs. Thereafter, the mechanical properties and anisotropy of additively manufactured PAEKs are discussed in depth. Their representative applications in biomedical, aerospace, electronics, and other fields are systematically presented. Finally, current challenges and possible solutions are discussed for the future development of high-performance AM polymers. This article is protected by copyright. All rights reserved.

15.
Front Med (Lausanne) ; 9: 807469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433758

RESUMO

Background: The COVID-19 pandemic posed enormous challenges to postgraduate teaching in 2020. Large-scale and continuous online teaching explorations were introduced to cope with this difficult situation, which incidentally shifted the paradigm of postgraduate teaching. Purpose: A review of the online teaching of local medical schools for postgraduates was performed to identify the success factors in realizing the practice. Methods: We retrieved medical postgraduate online teaching publications mainly from the local database, the China National Knowledge Infrastructure (CNKI), via the keywords stated below and then performed a retrospective analysis. Results: We analyzed key success factors in improving online learning engagement that were considered exclusive to offline classroom teaching, including emotional interaction, the immediacy of communication, and enthusiasm for participation. With these positive effects, the integration of online and offline teaching advantages is beneficial for the initiative of academic medical postgraduates and promotes the construction and development of medical postgraduate education. Conclusion: Online education can overcome the limitations of time, space, and teaching frequency, with great advantages in terms of flexibility and mobility over traditional classroom teaching. It can effectively cope with difficulties in the education of academic medical postgraduates in challenging times. In the post-pandemic era, blended online and offline teaching approaches continue and will become the new normal pedagogy for the training of medical postgraduate students.

16.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409321

RESUMO

Retinitis Pigmentosa (RP) is a hereditary retinal disorder that causes the atrophy of photoreceptor rod cells. Since individual defective genes converge on the same disease, we hypothesized that all causal genes of RP belong in a complex network. To explore this hypothesis, we conducted a gene connection analysis using 161 genes attributed to RP, compiled from the Retinal Information Network, RetNet. We then examined the protein interaction network (PIN) of these genes. In line with our hypothesis, using STRING, we directly connected 149 genes out of the recognized 159 genes. To uncover the association between the PIN and the ten unrecalled genes, we developed an algorithm to pinpoint the best candidate genes to connect the uncalled genes to the PIN and identified ten such genes. We propose that mutations within these ten genes may also cause RP; this notion is supported by analyzing and categorizing the known causal genes based on cellular locations and related functions. The successful establishment of the PIN among all documented genes and the discovery of novel genes for RP strongly suggest an interconnectedness that causes the disease on the molecular level. In addition, our computational gene search protocol can help identify the genes and loci responsible for genetic diseases, not limited to RP.


Assuntos
Retinite Pigmentosa , Testes Genéticos , Humanos , Mutação , Retina/metabolismo , Retinite Pigmentosa/metabolismo
17.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409349

RESUMO

One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.


Assuntos
Escherichia coli , Metanol , Acetaldeído , Escherichia coli/genética , Etanol , Formaldeído , Metanol/química
18.
Plants (Basel) ; 11(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35448759

RESUMO

In Myanmar, yellow mosaic and leaf curl diseases caused by whitefly-transmitted begomoviruses are serious problems for vegetables such as tomatoes and peppers. To investigate the incidence of begomoviruses in Myanmar between 2017 and 2019, a field survey of tomato and pepper plants with virus-like symptoms was conducted in the Naypyitaw, Tatkon, and Mohnyin areas of Myanmar. Among the 59 samples subjected to begomovirus detection using polymerase chain reaction, 59.3% were infected with begomoviruses. Complete genome sequences using rolling circle amplification identified five begomovirus species: tomato yellow leaf curl Thailand virus (TYLCTHV), tomato yellow leaf curl Kanchanaburi virus (TYLCKaV), tobacco leaf curl Yunnan virus (TbLCYnV), chili leaf curl Pakistan virus (ChiLCV/PK), and tobacco curly shoot Myanmar virus (TbCSV-[Myanmar]). Excluding the previously reported TYLCTHV, three begomoviruses (ChiLCV/PK, TYLCKaV, and TbLCYnV) were identified in Myanmar for the first time. Based on the 91% demarcation threshold of begomovirus species, TbCSV-[Myanmar] was identified as a new species in this study. Among these, ChiLCV/PK and TbCSV-[Myanmar] were the most predominant in tomato and pepper fields in Myanmar. Identification of begomovirus species may be helpful for predicting the origin of viruses and preventing their spread.

19.
Cell Stem Cell ; 29(4): 610-619.e5, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395188

RESUMO

Human pluripotent stem cell (hPSC)-derived myogenic progenitor cell (MPC) transplantation is a promising therapeutic approach for a variety of degenerative muscle disorders. Here, using an MPC-specific fluorescent reporter system (PAX7::GFP), we demonstrate that hPSC-derived MPCs can contribute to the regeneration of myofibers in mice following local injury and in mice deficient of dystrophin (mdx). We also demonstrate that a subset of PAX7::GFP MPCs engraft within the basal lamina of regenerated myofibers, adopt a quiescent state, and contribute to regeneration upon reinjury and in mdx mouse models. This subset of PAX7::GFP MPCs undergo a maturation process and remodel their molecular characteristics to resemble those of late-stage fetal MPCs/adult satellite cells following in vivo engraftment. These in-vivo-matured PAX7::GFP MPCs retain a cell-autonomous ability to regenerate and can repopulate in the niche of secondary recipient mice, providing a proof of principle for future hPSC-based cell therapy for muscle disorders.


Assuntos
Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Distrofina , Humanos , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Transplante de Células-Tronco
20.
Nutrients ; 14(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35334874

RESUMO

While harmful effects of blue light on skin cells have been recently reported, there are few studies regarding natural products that alleviate its negative effects. Therefore, we investigated ameliorating effects of yellow chaste weed (YCW) (Helichrysum arenarium) extract and its components, apigenin and galangin, on blue light-irradiated HaCaT cells. In this study, we found that YCW extract improved the reduced proliferation of HaCaT cells induced by blue light-irradiation and reduced blue light-induced production of reactive oxygen species (ROS) levels. We also found that apigenin and galangin, the main components of YCW extract, showed the same activities as YCW extract. In experiments examining molecular mechanisms of YCW extract and its components such as apigenin and galangin, they all reduced expression of transient receptor potential vanilloid member 1 (TRPV1), its phosphorylation, and calcium ion (Ca2+) influx induced by blue light irradiation. In addition, apigenin and galangin regulated phosphorylation of mitogen-activated protein kinases (MAPKs). They also reduced phosphorylation of mammalian sterile 20-like kinase-1/2 (MST-1/2), inducing phosphorylation of Akt (protein kinase B), one downstream molecule of MST-1/2. Moreover, apigenin and galangin promoted translocation of Forkhead box O3 (FoxO3a) from the nucleus to the cytosol by phosphorylating FoxO3a. Besides, apigenin and galangin interrupted blue light influences on expression of nuclear and secretory clusterin. Namely, they attenuated both upregulation of nuclear clusterin and downregulation of secretory clusterin induced by blue light irradiation. We also found that they downregulated apoptotic protein Bcl-2 associated X protein (Bax) and conversely upregulated anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Collectively, these findings indicate that YCW extract and its components, apigenin and galangin, antagonize the blue light-induced damage to the keratinocytes by regulating TRPV1/clusterin/FoxO3a and MAPK signaling.


Assuntos
Apigenina , Células HaCaT , Animais , Apigenina/farmacologia , Proliferação de Células , Flavonoides , Humanos , Mamíferos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...