Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32040293

RESUMO

Graphene has been applied to thermal technology including boiling and condensation heat transfer, from which the pool boiling enhancement relies on adjusting the surface morphology and wettability that is favorable to catalyze the vaporization on the fluid/graphene interface. However, previous works using graphene or reduced graphene oxide (RGO) flake coatings, where the morphology of graphene coating is nonuniform and most of the underlying structured cavities are sealed by graphene flakes. For a long time, this hampered the unraveling of the mechanism behind the enhanced boiling performance by graphene coatings. Moreover, the previous work relied on using water-based pool boiling, which limits the scope of its practical applications since the versatile nonpolar refrigerant has been widely used in boiling heat transfer. The pool boiling was carried out on a plain copper surface to study the effect of fluorinated graphene (F-graphene) coating using nonpolar refrigerant R-141b as the working fluid along with bubble dynamic visualization. It was found that the increase of contact angle leads to more active cavities and enhances heat transfer performance up to twice as much, by applying the F-graphene coating. Moreover, the mechanism of graphene-enhanced heat transfer performance was unraveled and mainly attributed to the hydrophobic surface and effective cavity structure. This research provides a practical and reliable route for enhancing the heat transfer through F-graphene-coatings, which paves the way for potential application in graphene-based thermal technologies.

2.
ACS Appl Mater Interfaces ; 11(50): 47289-47298, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31746197

RESUMO

Development of n-/p-type semiconducting graphenes is a critical route to implement in graphene-based nanoelectronics and optronics. Compared to the p-type graphene, the n-type graphene is more difficult to be prepared. Recently, phosphorous doping was reported to achieve air-stable and high mobility of n-typed graphene. The phosphorous-doped graphene (P-Gra) by ion implantation is considered as an ideal method for tailoring graphene due to its IC compatible process; however, for a conventional ion implanter, the acceleration energy is in the order of kiloelectron volts (keV), thus severely destroys the sp2 bonding of graphene owing to its high energy of accelerated ions. The introduced defects, therefore, degrade the electrical performance of graphene. Here, for the first time, we report a low-damage n-typed chemical vapor deposition (CVD) graphene by an industrial-compatible ion implanter with an energy of 20 keV where the designed protection layer (thin Au film) covered on as-grown CVD graphene is employed to efficiently reduce defect formation. The additional post-annealing is found to heal the crystal defects of graphene. Moreover, this method allows transferring ultraclean and residue-free P-Gra onto versatile target substrates directly. The doping configuration, crystallinity, and electrical properties on P-Gra were comprehensively studied. The results indicate that the low-damaged P-Gra with a controllable doping concentration of up to 4.22 at % was achieved, which is the highest concentration ever recorded. The doped graphenes with tunable work functions (4.85-4.15 eV) and stable n-type doping while keeping high-carrier mobility are realized. This work contributes to the proof-of-concept for tailoring graphene or 2D materials through doping with an exceptional low defect density by the low energy ion implantation, suggesting a great potential for unconventional doping technologies for next-generation 2D-based nanoelectronics.

3.
ACS Appl Mater Interfaces ; 11(40): 36560-36570, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508931

RESUMO

Nanoporous holey-graphene (HG) shows potential versatility in several technological fields, especially in biomedical, water filtration, and energy storage applications. Particularly, for ultrahigh electrochemical energy storage applications, HG has shown promise in addressing the issue of low gravimetric and volumetric energy densities by boosting of the ion-transport efficiency in a high-mass-loaded graphene electrode. However, there are no studies showing complete control over the entire pore architecture and density of HG and their effect on high-rate energy storage. Here, we report a unique and cost-effective method for obtaining well-controlled HG, where a copper nanocatalyst assists the predefined porosity tailoring of the HG and leads to an extraordinary high pore density that exceeds 1 × 103 µm-2. The pore architectures of the hierarchical and homogenous pores of HG were realized through a rationally designed nanocatalyst and the annealing procedure in this method. The HG electrode with a high mass loading results in improved supercapacitor performance that is at least 1 order of magnitude higher than conventional graphene flakes (reduced electrochemically exfoliated graphene (rECG)) in areal capacitance (∼100% retention of capacitance until 15 000 cycles), energy density, and power density. The diffusion coefficient of the HG electrode is 1.5-fold higher than that of rECG at a mass loading of 15 mg cm-2, indicating excellent ion-transport efficiency. The excellent ion-transport efficiency of HG is further proved by nearly 4-fold magnitude lowering of its Rion (the ionic resistance in the electrolyte-filled pores) value as compared with rECG when estimated for equivalent high-mass-loaded electrodes. Furthermore, the HG exhibits a packing density that is 2 orders of magnitude higher than rECG, revealing the utility of the maximum electrode mass and possessing higher volumetric capacitance. The perfect tailoring of HG with optimized porosity allows the achievement of high areal capacitance and excellent cycling stability due to the facile ion- and charge-transport at high-mass-loaded electrodes, which could open a new avenue for addressing the long-existing issue of practical application of graphene-based energy storage devices.

4.
ACS Omega ; 4(7): 11380-11387, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460242

RESUMO

We discuss here a solution-processed thin film of antimony trisulphide (Sb2S3; band gap ≈ 1.7 eV; electronic configuration: ns2np0) for applications in planar heterojunction (PHJ) solar cells. An alternative solution processing method involving a single-metal organic precursor, viz., metal-butyldithiocarbamic acid complex, is used to grow the thin films of Sb2S3. Because of excess sulphide in the metal complex, the formation of any oxide is nearly retarded. Sb2S3 additionally displays structural anisotropy with a ribbon-like structure along the [001] direction. These ribbon-like structures, if optimally oriented with respect to the electron transport layer (ETL)/glass substrate, can be beneficial for light-harvesting and charge-transport properties. A PHJ solar cell is fabricated comprising Sb2S3 as the light absorber and CdS as an ETL coated on to FTO. With varying film sintering temperature and thickness, the typical ribbon-like structures predominantly with planes hkl: l = 0 stacked horizontally along with respect to CdS/FTO are obtained. The morphology of the films is observed to be a function of the sintering temperature, with higher sintering temperatures yielding compact and smooth films with large-sized grains. Maximum photon to electricity efficiency of 2.38 is obtained for PHJ solar cells comprising 480 nm thick films of Sb2S3 sintered at 350 °C having a grain size of few micrometers (>5 µm). The study convincingly shows that improper grain orientation, which may lead to nonoptimal alignments of the intrinsic structure with regard to the ETL/glass substrate, is not the sole parameter for determining photovoltaics performance. Other solution-processing parameters can still be suitably chosen to generate films with optimum morphology, leading to high photon to electricity efficiency.

5.
Nanotechnology ; 30(44): 445702, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349243

RESUMO

In this study, we demonstrated the integration of black phosphorus (BP) nanoflakes in a resistive random access memory (RRAM) with a facile and complementary metal-oxide-semiconductor-compatible process. The solution-processed BP nanoflakes embedded in polystyrene (PS) as an active layer were sandwiched between aluminum electrodes (Al/BP:PS/Al). The device shows a figure of merit with typical bipolar behavior and forming-free characteristics as well as excellent memory performances such as nonvolatile, low operation voltage (1.75 V) and high ON/OFF ratio (>102) as well as the long retention time (>1500 s). The improved device performances were attributed to the formation of effective trap sites from the hybrid structure of the active layer (BP:PS), especially the BP nanoflakes and the partly oxidized species (P x O y ). Moreover, the extrinsic aluminum oxide layer was observed after the device operation. The mechanism of switching behavior was further unveiled through the carrier transport models, which confirms the conductive mechanisms of space-charge-limited current and Ohmic conductance at high resistance state (HRS) and low resistance state, respectively. Additionally, in the high electric field at HRS, the transfer curve was well fitted with the Poole-Frenkel emission model, which could be attributed to the formation of the aluminum oxide layer. Accordingly, both the trapping/de-trapping of carriers and the formation/rupture of conductive filaments were introduced as transport mechanisms in our devices. Although the partial P x O y species on BP were inevitable during the liquid phase exfoliation process, which was regarded as the disadvantages for various applications, it turns to a key point for improving performances in memory devices. The proposed approach to integrating BP nanoflakes in the active layer of the RRAM device could pave the way for next-generation memory devices.

6.
Nanoscale ; 10(26): 12612-12624, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29942963

RESUMO

Graphene is impermeable to all molecules and has high chemical stability, which makes it an excellent anticorrosion coating for metals. However, current studies have indicated that galvanic coupling between graphene and a metal actually accelerates corrosion at the interface. Due to the insulating nature of polymers, graphene-polymer composite coatings with a strong interaction between the filler and the polymer matrix are an alternative means of addressing this issue. Nevertheless, such coatings require well-dispersed graphene flakes to lengthen the diffusion paths of gases or liquids, while preventing the formation of a conducting network from graphene to the metal. The difficulty in preparing such coatings was mainly due to problems with the control of the assembled phase during interfacial reactions. Herein, the interactions between the filler and the polymer were found to be a key factor governing anticorrosion performance, which has scarcely been previously reported. The advantage of graphene as a filler in anticorrosion coatings lies in its dispersibility and miscibility with both the casting solvent and the polymer. Electrochemically exfoliated graphene (EC-graphene) with appropriate surface functionalities that allow high miscibility with waterborne polyurethane (PU) and hydrophobic epoxy has been found to be an ideal filler that outperforms other graphene materials such as graphene oxide (GO) and reduced graphene oxide (rGO). Furthermore, a bilayer coating with EC-graphene additives for PU over epoxy has been found to reduce the corrosion rate (CR) to 1.81 × 10-5 mm per year. With a graphene loading of less than 1%, this represents the lowest CR ever achieved for copper and steel substrates and a diffusion coefficient that is lower by a factor of nearly 2.2 than that of the pristine polymer. Furthermore, we have shown that by controlling the amount of graphene loaded in the polymer galvanic corrosion favored by the formation of an interconnected graphene percolation network can successfully be limited. The present study, together with a facile and eco-friendly method of nanocomposite synthesis, may pave the way toward practical applications in the development of graphene-based anticorrosion coatings.

7.
Phys Chem Chem Phys ; 19(45): 30381-30392, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29119159

RESUMO

Supercapacitors constructed from three-dimensional (3D) graphene electrodes with high ion-accessible surface area and durable mechanical flexibility have great potential for wearable devices. For the development of a highly efficient graphene electrode for electrical double layer capacitors (EDLCs), proper control over not only the specific surface area but also the type of pore (macro-, meso- and micro-porous networks) adapted for an appropriate type of electrolyte is crucial to ensure an ideal performance in terms of both energy density and power delivery rate. However, there is still a lack of technology to create graphene structures that combine macro-, meso- and micro-pores by a one-step and facile method. In addition, the ion/electron transport of a solid state electrolyte among such multimodal pore structures is not fully investigated. Here, we report a novel cost-effective technique of concentration dependent self-assembly of electrochemically exfoliated graphene (EC-graphene) to obtain a 3D architecture with controllable macropores (0.39-4.99 µm) and multimodal hierarchical meso- and micro-pores. The better performance of the 3D architecture is obtained due to its optimum micron-sized macropore diameter (∼5 µm) that serves as an ion buffering reservoir, followed by facile ion diffusion kinetics through the well-modulated combination of macro-, meso- and micro-pores. The binder and conductive carbon additive free supercapacitor constructed from the 3D graphene electrode exhibited a specific capacitance of 45.40 F g-1 (6 M KOH) and 23.89 F g-1 (1 M H2SO4 gel electrolyte). A capacitance retention of above 90% (up to 180° folding angle) after 50 bending-relaxing cycles is obtained, implying the superior durability of the device and the worthiness of the synthesis procedure. The method reported here may pave the way for the development of an environment friendly, large scale producible and controlled porous graphene-based architecture for the high performance next generation flexible, all-solid-state and binder-free energy storage devices.

8.
ChemSusChem ; 10(18): 3534-3539, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834366

RESUMO

Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity.


Assuntos
Carvão Vegetal/química , Capacitância Elétrica , Eletrólitos/química , Engenharia , Porosidade
9.
ChemSusChem ; 10(11): 2464-2472, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28318144

RESUMO

An eco-efficient synthetic route for the preparation of high-performance carbonate anodes for Li+ and Na+ batteries is developed. With supercritical CO2 (scCO2 ) as the precursor, which has gas-like diffusivity, extremely low viscosity, and near-zero surface tension, CoCO3 particles are uniformly formed and tightly connected on graphene nanosheets (GNSs). This synthesis can be conducted at 50 °C, which is considerably lower than the temperature required for conventional preparation methods, minimizing energy consumption. The obtained CoCO3 particles (ca. 20 nm in diameter), which have a unique interpenetrating porous structure, can increase the number of electroactive sites, promote electrolyte accessibility, shorten ion diffusion length, and readily accommodate the strain generated upon charging/discharging. With a reversible capacity of 1105 mAh g-1 , the proposed CoCO3 /GNS anode shows an excellent rate capability, as it can deliver 745 mAh g-1 in 7.5 min. More than 98 % of the initial capacity is retained after 200 cycles. These properties are clearly superior to those of previously reported CoCO3 -based electrodes for Li+ storage, indicating the merit of our scCO2 -based synthesis, which is facile, green, and can be easily scaled up for mass production.


Assuntos
Fontes de Energia Elétrica/normas , Lítio/química , Sódio/química , Dióxido de Carbono , Carbonatos/química , Cobalto/química , Técnicas Eletroquímicas , Química Verde/métodos , Porosidade
10.
ACS Appl Mater Interfaces ; 9(37): 31235-31244, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28319361

RESUMO

The self-assembly of a block copolymer offers access to micellar nanodomains with tunable dimensions and structural diversity through control of such molecular parameters as the volume fraction and molecular mass. We fabricated hierarchical porous carbon (HPC) nanostructures with bundles of aggregated nanospheres and with nitrogen-rich functional groups through pyrolysis of diblock copolymer micelles in multiple layers. The resultant HPC nanostructures with a considerable specific surface area serve as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), coupled with fluorescence quenching, for molecular sensing of physically adsorbed Rhodamine 6G. The abundant nitrogen atoms terminating on the surface of HPC nanostructures play a critical role in promoting a large Raman enhancement generated via a chemical mechanism. Most importantly, the observed enhancement factors show a clear dependence on the mesoscale porosity within HPC nanostructures, indicating that the chemical enhancement can be steadily tuned with control over the interfacial areas as a function of the nanosphere size. The unique architecture of HPC nanostructures based on the construction of a building block of a well-defined network of core-shell nanospheres provides a new design strategy for fabricating SERS substrates.

11.
Sci Rep ; 6: 35467, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739504

RESUMO

The majority of the proposed graphene-based THz devices consist of a metamaterial that can optically interact with graphene. This coupled graphene-metamaterial system gives rise to a family of resonant modes such as the surface plasmon polariton (SPP) modes of graphene, the geometrically induced SPPs, also known as the spoof SPP modes, and the Fabry-Perot (FP) modes. In the literature, these modes are usually considered separately as if each could only exist in one structure. By contrast, in this paper, we show that even in a simple metamaterial structure such as a one-dimensional (1D) metallic slit grating, these modes all exist and can potentially interact with each other. A graphene SPP-based THz device is also fabricated and measured. Despite the high scattering rate, the effective SPP resonances can still be observed and show a consistent trend between the effective frequency and the grating period, as predicted by the theory. We also find that the excitation of the graphene SPP mode is most efficient in the terahertz spectral region due to the Drude conductivity of graphene in this spectral region.

12.
ACS Appl Mater Interfaces ; 8(32): 20993-1001, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27462874

RESUMO

In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

13.
Nanoscale ; 8(6): 3555-64, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26805513

RESUMO

In this work, we fabricate ultra-large suspended graphene membranes, where stacks of a few layers of graphene could be suspended over a circular hole with a diameter of up to 1.5 mm, with a diameter to thickness aspect ratio of 3 × 10(5), which is the record for free-standing graphene membranes. The process is based on large crystalline graphene (∼55 µm) obtained using a chemical vapor deposition (CVD) method, followed by a gradual solvent replacement technique. Combining a hydrogen bubbling transfer approach with thermal annealing to reduce polymer residue results in an extremely clean surface, where the ultra-large suspended graphene retains the intrinsic features of graphene, including phonon response and an enhanced carrier mobility (200% higher than that of graphene on a substrate). The highly elastic mechanical properties of the graphene membrane are demonstrated, and the Q-factor under 2 MHz stimulation is measured to be 200-300. A graphene-based capacitive pressure sensor is fabricated, where it shows a linear response and a high sensitivity of 15.15 aF Pa(-1), which is 770% higher than that of frequently used silicon-based membranes. The reported approach is universal, which could be employed to fabricate other suspended 2D materials with macro-scale sizes on versatile support substrates, such as arrays of Si nano-pillars and deep trenches.

14.
Adv Mater ; 27(41): 6519-25, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26398725

RESUMO

The conduction channel of a graphene field-effect transistor (FET) is decoupled from the parasitic charge impurities of the underlying substrate. Fluorographene as a passivation layer is fabricated between the oxide substrate and channel, and a self-aligned gate-terminated FET is also fabricated. This approach significantly reduces the scattering and, as a result, the mobility increases ten fold.

15.
Nanoscale ; 7(37): 15362-73, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26332120

RESUMO

Large-scale production of uniform and high-quality graphene is required for practical applications of graphene. The electrochemical exfoliation method is considered as a promising approach for the practical production of graphene. However, the relatively low production rate of graphene currently hinders its usage. Here, we demonstrate, for the first time, a rapid and high-yield approach to exfoliate graphite into graphene sheets via an electrochemical method with small molecular additives; where in this approach, the use of melamine additives is able to efficiently exfoliate graphite into high-quality graphene sheets. The exfoliation yield can be increased up to 25 wt% with melamine additives compared to electrochemical exfoliation without such additives in the electrolyte. The proposed mechanism for this improvement in the yield is the melamine-induced hydrophilic force from the basal plane; this force facilitates exfoliation and provides in situ protection of the graphene flake surface against further oxidation, leading to high-yield production of graphene of larger crystallite size. The residual melamine can be easily washed away by water after collection of the graphene. The exfoliation with molecular additives exhibits higher uniformity (over 80% is graphene of less than 3 layers), lower oxidation density (C/O ratio of 26.17), and low defect level (D/G < 0.45), which are characteristics superior to those of reduced graphene oxide (rGO) or of a previously reported approach of electrochemical exfoliated graphene (EC-graphene). The continuous films obtained by the purified graphene suspension exhibit a sheet resistance of 13.5 kΩ â–¡(-1) at ∼95% transmittance. A graphene-based nanocomposite with polyvinyl butyral (PVB) exhibits an electrical conductivity of 3.3 × 10(-3) S m(-1) for the graphene loading fraction of 0.46 vol%. Moreover, the melamine functionalized graphene sheets are readily dispersed in the aqueous solution during the exfoliation process, allowing for the production of graphene in a continuous process. The continuous process for producing graphene was demonstrated, with a yield rate of 1.5 g h(-1). The proposed method can produce high-crystallinity graphene in a fast and high-yield manner, which paves the path towards mass production of high-quality graphene for a variety of applications.

16.
ACS Appl Mater Interfaces ; 6(20): 17679-85, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25266066

RESUMO

Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

17.
Sci Rep ; 4: 5893, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25081226

RESUMO

There is broad interest in surface functionalization of 2D materials and its related applications. In this work, we present a novel graphene layer transistor fabricated by introducing fluorinated graphene (fluorographene), one of the thinnest 2D insulator, as the gate dielectric material. For the first time, the dielectric properties of fluorographene, including its dielectric constant, frequency dispersion, breakdown electric field and thermal stability, were comprehensively investigated. We found that fluorographene with extremely thin thickness (5 nm) can sustain high resistance at temperature up to 400 °C. The measured breakdown electric field is higher than 10 MV cm(-1), which is the heightest value for dielectric materials in this thickness. Moreover, a proof-of-concept methodology, one-step fluorination of 10-layered graphene, is readily to obtain the fluorographene/graphene heterostructures, where the top-gated transistor based on this structure exhibits an average carrier mobility above 760 cm(2)/Vs, higher than that obtained when SiO2 and GO were used as gate dielectric materials. The demonstrated fluorographene shows excellent dielectric properties with fast and scalable processing, providing a universal applications for the integration of versatile nano-electronic devices.

18.
Small ; 10(5): 989-97, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23956038

RESUMO

In this study, the scalable and one-step fabrication of single atomic-layer transistors is demonstrated by the selective fluorination of graphene using a low-damage CF4 plasma treatment, where the generated F-radicals preferentially fluorinated the graphene at low temperature (<200 °C) while defect formation was suppressed by screening out the effect of ion damage. The chemical structure of the C-F bonds is well correlated with their optical and electrical properties in fluorinated graphene, as determined by X-ray photoelectron spectroscopy, Raman spectroscopy, and optical and electrical characterizations. The electrical conductivity of the resultant fluorinated graphene (F-graphene) was demonstrated to be in the range between 1.6 kΩ/sq and 1 MΩ/sq by adjusting the stoichiometric ratio of C/F in the range between 27.4 and 5.6, respectively. Moreover, a unique heterojunction structure of semi-metal/semiconductor/insulator can be directly formed in a single layer of graphene using a one-step fluorination process by introducing a Au thin-film as a buffer layer. With this heterojunction structure, it would be possible to fabricate transistors in a single graphene film via a one-step fluorination process, in which pristine graphene, partial F-graphene, and highly F-graphene serve as the source/drain contacts, the channel, and the channel isolation in a transistor, respectively. The demonstrated graphene transistor exhibits an on-off ratio above 10, which is 3-fold higher than that of devices made from pristine graphene. This efficient transistor fabrication method produces electrical heterojunctions of graphene over a large area and with selective patterning, providing the potential for the integration of electronics down to the single atomic-layer scale.

19.
ACS Nano ; 7(12): 10818-24, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24224797

RESUMO

Graphene, which exhibits excellent thermal conductivity, is a potential heat dissipation medium for compact optoelectronic devices. Photonic devices normally produce large- quantity of unwanted heat, and thus, a heat dissipation strategy is urgently needed. In this study, single-layer graphene (SLG) grown by chemical vapor deposition (CVD) is used to cover the surface of a photonic crystal (PhC) cavity, where the heat flux produced by the PhC cavity can be efficiently dissipated along the in-plane direction of the SLG. The thermal properties of the graphene-capped PhC cavity were characterized by experiments and theoretical calculations. The thermal resistance of the SLG-capped PhC cavity obtained from experiments is lower than half of that of a bare PhC cavity. The temperature of a SLG-capped PhC cavity is 45 K lower than that without SLG capping under an optical power of 100 µW. Our simulation results indicate that SLG receives the majority of the heat fluxes from the device, leading to the efficient heat dissipation. Both the experimental and simulation results suggest that the SLG is a promising material to enhance the heat dissipation efficiency for optoelectronic applications.

20.
EMBO Mol Med ; 5(8): 1227-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23836498

RESUMO

Stress-inducible protein-1 (STI-1) is the proposed ligand for the cellular prion protein (PrP(C) ), which is thought to facilitate recovery following stroke. Whether STI-1 expression is affected by stroke and how its signalling facilitates recovery remain elusive. Brain slices from patients that died of ischemic stroke were collected for STI-1 immunohistochemistry. These findings were compared to results from cell cultures, mice with or without the PrP(C) knockout, and rats. Based on these findings, molecular and pharmacological interventions were administered to investigate the underlying mechanisms and to test the possibility for therapy in experimental stroke models. STI-1 was upregulated in the ischemic brains from humans and rodents. The increase in STI-1 expression in vivo was not cell-type specific, as it was found in neurons, glia and endothelial cells. Likewise, this increase in STI-1 expression can be mimicked by sublethal hypoxia in primary cortical cultures (PCCs) in vitro, and appear to have resulted from the direct binding of the hypoxia inducible factor-1α (HIF-1α) to the STI-1 promoter. Importantly, this STI-1 signalling promoted bone marrow derived cells (BMDCs) proliferation and migration in vitro and recruitment to the ischemic brain in vivo, and augmenting its signalling facilitated neurological recovery in part by recruiting BMDCs to the ischemic brain. Our results thus identified a novel mechanism by which ischemic insults can trigger a self-protective mechanism to facilitate recovery.


Assuntos
Células da Medula Óssea/citologia , Isquemia Encefálica/metabolismo , Encéfalo/patologia , Proteínas de Choque Térmico/metabolismo , Animais , Encéfalo/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas PrPC/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA