Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Commun ; 12(1): 5848, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615879

RESUMO

The functional annotation of livestock genomes is crucial for understanding the molecular mechanisms that underpin complex traits of economic importance, adaptive evolution and comparative genomics. Here, we provide the most comprehensive catalogue to date of regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic data sets, representing 14 biologically important tissues. We systematically describe the dynamic epigenetic landscape across tissues by functionally annotating 15 different chromatin states and defining their tissue-specific regulatory activities. We demonstrate that genomic variants associated with complex traits and adaptive evolution in pig are significantly enriched in active promoters and enhancers. Furthermore, we reveal distinct tissue-specific regulatory selection between Asian and European pig domestication processes. Compared with human and mouse epigenomes, we show that porcine regulatory elements are more conserved in DNA sequence, under both rapid and slow evolution, than those under neutral evolution across pig, mouse, and human. Finally, we provide biological insights on tissue-specific regulatory conservation, and by integrating 47 human genome-wide association studies, we demonstrate that, depending on the traits, mouse or pig might be more appropriate biomedical models for different complex traits and diseases.

2.
Analyst ; 146(18): 5474-5495, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515706

RESUMO

Acute myocardial infarction (AMI) is the main cause of death from cardiovascular diseases. Thus, early diagnosis of AMI is essential for the treatment of irreversible damage from myocardial infarction. Traditional electrocardiograms (ECG) cannot meet the specific detection of AMI. Cardiac troponin I (cTnI) is the main biomarker for the diagnosis of myocardial infarction, and the detection of cTnI content has become particularly important. In this review, we introduced and compared the advantages and disadvantages of various cTnI detection methods. We focused on the analysis and comparison of the main indicators and limitations of various cTnI biosensors, including the detection range, detection limit, specificity, repeatability, and stability. In particular, we pay more attention to the application and development of electrochemical biosensors in the diagnosis of cardiovascular diseases based on different biological components. The application of electrochemical microfluidic chips for cTnI was also briefly introduced in this review. Finally, this review also briefly discusses the unresolved challenges of electrochemical detection and the expectations for improvement in the detection of cTnI biosensing in the future.


Assuntos
Técnicas Biossensoriais , Infarto do Miocárdio , Biomarcadores , Diagnóstico Precoce , Humanos , Infarto do Miocárdio/diagnóstico , Troponina I
3.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491599

RESUMO

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.

5.
Genet Sel Evol ; 53(1): 46, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058971

RESUMO

BACKGROUND: In dairy cattle populations in which crossbreeding has been used, animals show some level of diversity in their origins. In rotational crossbreeding, for instance, crossbred dams are mated with purebred sires from different pure breeds, and the genetic composition of crossbred animals is an admixture of the breeds included in the rotation. How to use the data of such individuals in genomic evaluations is still an open question. In this study, we aimed at providing methodologies for the use of data from crossbred individuals with an admixed genetic background together with data from multiple pure breeds, for the purpose of genomic evaluations for both purebred and crossbred animals. A three-breed rotational crossbreeding system was mimicked using simulations based on animals genotyped with the 50 K single nucleotide polymorphism (SNP) chip. RESULTS: For purebred populations, within-breed genomic predictions generally led to higher accuracies than those from multi-breed predictions using combined data of pure breeds. Adding admixed population's (MIX) data to the combined pure breed data considering MIX as a different breed led to higher accuracies. When prediction models were able to account for breed origin of alleles, accuracies were generally higher than those from combining all available data, depending on the correlation of quantitative trait loci (QTL) effects between the breeds. Accuracies varied when using SNP effects from any of the pure breeds to predict the breeding values of MIX. Using those breed-specific SNP effects that were estimated separately in each pure breed, while accounting for breed origin of alleles for the selection candidates of MIX, generally improved the accuracies. Models that are able to accommodate MIX data with the breed origin of alleles approach generally led to higher accuracies than models without breed origin of alleles, depending on the correlation of QTL effects between the breeds. CONCLUSIONS: Combining all available data, pure breeds' and admixed population's data, in a multi-breed reference population is beneficial for the estimation of breeding values for pure breeds with a small reference population. For MIX, such an approach can lead to higher accuracies than considering breed origin of alleles for the selection candidates, and using breed-specific SNP effects estimated separately in each pure breed. Including MIX data in the reference population of multiple breeds by considering the breed origin of alleles, accuracies can be further improved. Our findings are relevant for breeding programs in which crossbreeding is systematically applied, and also for populations that involve different subpopulations and between which exchange of genetic material is routine practice.


Assuntos
Bovinos/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Endogamia , Modelos Genéticos , Locos de Características Quantitativas , Padrões de Referência , Seleção Artificial
6.
J Dairy Sci ; 104(9): 10010-10019, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099302

RESUMO

Despite the importance of the quality of semen used in artificial insemination to the reproductive success of dairy herds, few studies have estimated the extent of genetic variability in semen quality traits. Even fewer studies have quantified the correlation between semen quality traits and male fertility. In this study, records of 100,058 ejaculates collected from 2,885 Nordic Holstein bulls were used to estimate genetic parameters for semen quality traits, including pre- and postcryopreservation semen concentration, sperm motility and viability, ejaculate volume, and number of doses per ejaculate. Additionally, summary data on nonreturn rate (NRR) obtained from insemination of some of the bulls (n = 2,142) to cows in different parities (heifers and parities 1-3 or more) were used to estimate correlations between the semen quality traits and service sire NRR. In the study, low to moderate heritability (0.06-0.45) was estimated for semen quality traits, indicating the possibility of improving these traits through selective breeding. The study also showed moderate to high genetic and phenotypic correlations between service sire NRR and some of the semen quality traits, including sperm viability pre- and postcryopreservation, motility postcryopreservation, and sperm concentration precryopreservation, indicating the predictive values of these traits for service sire NRR. The positive moderate to high genetic correlations between semen quality and service sire NRR traits also indicated that selection for semen quality traits might be favorable for improving service sire NRR.


Assuntos
Fertilidade , Análise do Sêmen , Animais , Bovinos/genética , Feminino , Fertilidade/genética , Inseminação Artificial/veterinária , Masculino , Sêmen , Análise do Sêmen/veterinária , Motilidade Espermática/genética
7.
J Anim Sci ; 99(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942082

RESUMO

Icelandic Cattle is a local dairy cattle breed in Iceland. With about 26,000 breeding females, it is by far the largest among the indigenous Nordic cattle breeds. The objective of this study was to investigate the feasibility of genomic selection in Icelandic Cattle. Pedigree-based best linear unbiased prediction (PBLUP) and single-step genomic best linear unbiased prediction (ssGBLUP) were compared. Accuracy, bias, and dispersion of estimated breeding values (EBV) for milk yield (MY), fat yield (FY), protein yield (PY), and somatic cell score (SCS) were estimated in a cross validation-based design. Accuracy (r^) was estimated by the correlation between EBV and corrected phenotype in a validation set. The accuracy (r^) of predictions using ssGBLUP increased by 13, 23, 19, and 20 percentage points for MY, FY, PY, and SCS for genotyped animals, compared with PBLUP. The accuracy of nongenotyped animals was not improved for MY and PY, but increased by 0.9 and 3.5 percentage points for FY and SCS. We used the linear regression (LR) method to quantify relative improvements in accuracy, bias (Δ^), and dispersion (b^) of EBV. Using the LR method, the relative improvements in accuracy of validation from PBLUP to ssGBLUP were 43%, 60%, 50%, and 48% for genotyped animals for MY, FY, PY, and SCS. Single-step GBLUP EBV were less underestimated (Δ^), and less overdispersed (b^) than PBLUP EBV for FY and PY. Pedigree-based BLUP EBV were close to unbiased for MY and SCS. Single-step GBLUP underestimated MY EBV but overestimated SCS EBV. Based on the average accuracy of 0.45 for ssGBLUP EBV obtained in this study, selection intensities according to the breeding scheme of Icelandic Cattle, and assuming a generation interval of 2.0 yr for sires of bulls, sires of dams and dams of bulls, genetic gain in Icelandic Cattle could be increased by about 50% relative to the current breeding scheme.


Assuntos
Genoma , Genômica , Animais , Bovinos/genética , Estudos de Viabilidade , Feminino , Genótipo , Masculino , Modelos Genéticos , Linhagem , Fenótipo
8.
Genet Sel Evol ; 53(1): 33, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832423

RESUMO

BACKGROUND: In breeding programs, recording large-scale feed intake (FI) data routinely at the individual level is costly and difficult compared with other production traits. An alternative approach could be to record FI at the group level since animals such as pigs are normally housed in groups and fed by a shared feeder. However, to date there have been few investigations about the difference between group- and individual-level FI recorded in different environments. We hypothesized that group- and individual-level FI are genetically correlated but different traits. This study, based on the experiment undertaken in purebred DanBred Landrace (L) boars, was set out to estimate the genetic variances and correlations between group- and individual-level FI using a bivariate random regression model, and to examine to what extent prediction accuracy can be improved by adding information of individual-level FI to group-level FI for animals recorded in groups. For both bivariate and univariate models, single-step genomic best linear unbiased prediction (ssGBLUP) and pedigree-based BLUP (PBLUP) were implemented and compared. RESULTS: The variance components from group-level records and from individual-level records were similar. Heritabilities estimated from group-level FI were lower than those from individual-level FI over the test period. The estimated genetic correlations between group- and individual-level FI based on each test day were on average equal to 0.32 (SD = 0.07), and the estimated genetic correlation for the whole test period was equal to 0.23. Our results demonstrate that by adding information from individual-level FI records to group-level FI records, prediction accuracy increased by 0.018 and 0.032 compared with using group-level FI records only (bivariate vs. univariate model) for PBLUP and ssGBLUP, respectively. CONCLUSIONS: Based on the current dataset, our findings support the hypothesis that group- and individual-level FI are different traits. Thus, the differences in FI traits under these two feeding systems need to be taken into consideration in pig breeding programs. Overall, adding information from individual records can improve prediction accuracy for animals with group records.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Peso Corporal , Cruzamento/métodos , Característica Quantitativa Herdável , Suínos/genética , Animais , Ingestão de Alimentos , Linhagem , Suínos/fisiologia
9.
J Anim Sci ; 99(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515480

RESUMO

Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.


Assuntos
Genoma , Vison , Animais , Genômica , Genótipo , Vison/genética , Modelos Genéticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Heredity (Edinb) ; 126(1): 206-217, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32665691

RESUMO

Records on groups of individuals could be valuable for predicting breeding values when a trait is difficult or costly to measure on single individuals, such as feed intake and egg production. Adding genomic information has shown improvement in the accuracy of genetic evaluation of quantitative traits with individual records. Here, we investigated the value of genomic information for traits with group records. Besides, we investigated the improvement in accuracy of genetic evaluation for group-recorded traits when including information on a correlated trait with individual records. The study was based on a simulated pig population, including three scenarios of group structure and size. The results showed that both the genomic information and a correlated trait increased the accuracy of estimated breeding values (EBVs) for traits with group records. The accuracies of EBV obtained from group records with a size 24 were much lower than those with a size 12. Random assignment of animals to pens led to lower accuracy due to the weaker relationship between individuals within each group. It suggests that group records are valuable for genetic evaluation of a trait that is difficult to record on individuals, and the accuracy of genetic evaluation can be considerably increased using genomic information. Moreover, the genetic evaluation for a trait with group records can be greatly improved using a bivariate model, including correlated traits that are recorded individually. For efficient use of group records in genetic evaluation, relatively small group size and close relationships between individuals within one group are recommended.

12.
Front Genet ; 11: 586155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250923

RESUMO

The random regression test-day model has become the most commonly adopted model for routine genetic evaluations in dairy populations, which allows accurately accounting for genetic and environmental effects over lactation. The objective of this study was to explore appropriate random regression test-day models for genetic evaluation of milk yield in a Holstein population with a relatively small size, which is the common situation in regional or independent breeding companies to preform genetic evaluation. Data included 419,567 test-day records from 54,417 cows from the first lactation. Variance components and breeding values were estimated using a random regression test-day model with different orders (from first to fifth) of Legendre polynomials (LP) and accounted for homogeneous or heterogeneous residual variance across the lactation. Models were compared based on Akaike information criterion (AIC), Bayesian information criterion (BIC), and predictive ability. In general, models with a higher order of LP showed better goodness of fit based on AIC and BIC values. However, models with third, fourth, and fifth order of LP led to similar estimates of genetic parameters and predictive ability. Models with assumption of heterogeneous residual variances achieved better goodness of fit but yielded similar predictive ability compared with those with assumption of homogeneous residual variances. Therefore, a random regression model with third order of LP is suggested to be an appropriate model for genetic evaluation of milk yield in local Chinese Holstein populations.

13.
Front Genet ; 11: 866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061932

RESUMO

Selective genotyping of phenotypically superior animals may lead to bias and less accurate genomic breeding values (GEBV). Performing selective genotyping based on phenotypes measured in the breeding environment (B) is not necessarily a good strategy when the aim of a breeding program is to improve animals' performance in the commercial environment (C). Our simulation study compared different genotyping strategies for selection candidates and for fish in C in a breeding program for rainbow trout in the presence of genotype-by-environment interactions when the program had limited genotyping resources and unregistered pedigrees of individuals. For the reference population, selective genotyping of top and bottom individuals in C based on phenotypes measured in C led to the highest genetic gains, followed by random genotyping and then selective genotyping of top individuals in C. For selection candidates, selective genotyping of top individuals in B based on phenotypes measured in B led to the highest genetic gains, followed by selective genotyping of top and bottom individuals and then random genotyping. Selective genotyping led to bias in predicting GEBV. However, in scenarios that used selective genotyping of top fish in B and random genotyping of fish in C, predictions of GEBV were unbiased, with genetic correlations of 0.2 and 0.5 between traits measured in B and C. Estimates of variance components were sensitive to genotyping strategy, with an overestimation of the variance with selective genotyping of top and bottom fish and an underestimation of the variance with selective genotyping of top fish. Unbiased estimates of variance components were obtained when fish in B and C were genotyped at random. In conclusion, we recommend phenotypic genotyping of top and bottom fish in C and top fish in B for the purpose of selecting breeding animals and random genotyping of individuals in B and C for the purpose of estimating variance components when a genomic breeding program for rainbow trout aims to improve animals' performance in C.

14.
Genet Sel Evol ; 52(1): 48, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32799816

RESUMO

BACKGROUND: Sequencing data enable the detection of causal loci or single nucleotide polymorphisms (SNPs) highly linked to causal loci to improve genomic prediction. However, until now, studies on integrating such SNPs using a single-step genomic best linear unbiased prediction (ssGBLUP) model are scarce. We investigated the integration of sequencing SNPs selected by association (1262 SNPs) and bioinformatics (2359 SNPs) analyses into the currently used 54K-SNP chip, using three ssGBLUP models which make different assumptions on the distribution of SNP effects: a basic ssGBLUP model, a so-called featured ssGBLUP (ssFGBLUP) model that considered selected sequencing SNPs as a feature genetic component, and a weighted ssGBLUP (ssWGBLUP) model in which the genomic relationship matrix was weighted by the SNP variances estimated from a Bayesian whole-genome regression model, with every 1, 30, or 100 adjacent SNPs within a chromosome region sharing the same variance. We used data on milk production and female fertility in Danish Jersey. In total, 15,823 genotyped and 528,981‬ non-genotyped females born between 1990 and 2013 were used as reference population and 7415 genotyped females and 33,040 non-genotyped females born between 2014 and 2016 were used as validation population. RESULTS: With basic ssGBLUP, integrating SNPs selected from sequencing data improved prediction reliabilities for milk and protein yields, but resulted in limited or no improvement for fat yield and female fertility. Model performances depended on the SNP set used. When using ssWGBLUP with the 54K SNPs, reliabilities for milk and protein yields improved by 0.028 for genotyped animals and by 0.006 for non-genotyped animals compared with ssGBLUP. However, with the SNP set that included SNPs selected from sequencing data, no statistically significant difference in prediction reliability was observed between the three ssGBLUP models. CONCLUSIONS: In summary, when using 54K SNPs, a ssWGBLUP model with a common weight on the SNPs in a given region is a feasible approach for single-trait genetic evaluation. Integrating relevant SNPs selected from sequencing data into the standard SNP chip can improve the reliability of genomic prediction. Based on such SNP data, a basic ssGBLUP model was suggested since no significant improvement was observed from using alternative models such as ssWGBLUP and ssFGBLUP.


Assuntos
Bovinos/genética , Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Bovinos/fisiologia , Cromossomos/genética , Feminino , Fertilidade/genética , Lactação/genética , Leite/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de DNA/métodos
15.
Sci Rep ; 10(1): 9524, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533087

RESUMO

The sequencing variants preselected from association analyses and bioinformatics analyses could improve genomic prediction. In this study, the imputation of sequencing SNPs preselected from major dairy breeds in Denmark-Finland-Sweden (DFS) and France (FRA) was investigated for both contemporary animals and old bulls in Danish Jersey. For contemporary animals, a two-step imputation which first imputed to 54 K and then to 54 K + DFS + FRA SNPs achieved highest accuracy. Correlations between observed and imputed genotypes were 91.6% for DFS SNPs and 87.6% for FRA SNPs, while concordance rates were 96.6% for DFS SNPs and 93.5% for FRA SNPs. The SNPs with lower minor allele frequency (MAF) tended to have lower correlations but higher concordance rates. For old bulls, imputation for DFS and FRA SNPs were relatively accurate even for bulls without progenies (correlations higher than 97.2% and concordance rates higher than 98.4%). For contemporary animals, given limited imputation accuracy of preselected sequencing SNPs especially for SNPs with low MAF, it would be a good strategy to directly genotype preselected sequencing SNPs with a customized SNP chip. For old bulls, given high imputation accuracy for preselected sequencing SNPs with all MAF ranges, it would be unnecessary to re-genotype preselected sequencing SNPs.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Feminino , Frequência do Gene , Masculino
16.
Heredity (Edinb) ; 125(3): 155-166, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32533106

RESUMO

The genetic underpinnings of calf mortality can be partly polygenic and partly due to deleterious effects of recessive lethal alleles. Prediction of the genetic merits of selection candidates should thus take into account both genetic components contributing to calf mortality. However, simultaneously modeling polygenic risk and recessive lethal allele effects in genomic prediction is challenging due to effects that behave differently. In this study, we present a novel approach where mortality risk probabilities from polygenic and lethal allele components are predicted separately to compute the total risk probability of an individual for its future offspring as a basis for selection. We present methods for transforming genomic estimated breeding values of polygenic effect into risk probabilities using normal density and cumulative distribution functions and show computations of risk probability from recessive lethal alleles given sire genotypes and population recessive allele frequencies. Simulated data were used to test the novel approach as implemented in probit, logit, and linear models. In the simulation study, the accuracy of predicted risk probabilities was computed as the correlation between predicted mortality probabilities and observed calf mortality for validation sires. The results indicate that our novel approach can greatly increase the accuracy of selection for mortality traits compared with the accuracy of predictions obtained without distinguishing polygenic and lethal gene effects.

17.
Genet Sel Evol ; 52(1): 23, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375639

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

18.
Front Genet ; 11: 108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174971

RESUMO

The choice of a genetic marker genotyping platform is important for genomic prediction in livestock and poultry. High-throughput sequencing can produce more genetic markers, but the genotype quality is lower than that obtained with single nucleotide polymorphism (SNP) chips. The aim of this study was to compare the accuracy of genomic prediction between high-throughput sequencing and SNP chips in broilers. In this study, we developed a new SNP marker screening method, the pre-marker-selection (PMS) method, to determine whether an SNP marker can be used for genomic prediction. We also compared a method which preselection marker based results from genome-wide association studies (GWAS). With the two methods, we analysed body weight at the12th week (BW) and feed conversion ratio (FCR) in a local broiler population. A total of 395 birds were selected from the F2 generation of the population, and 10X specific-locus amplified fragment sequencing (SLAF-seq) and the Illumina Chicken 60K SNP Beadchip were used for genotyping. The genomic best linear unbiased prediction method (GBLUP) was used to predict the genomic breeding values. The accuracy of genomic prediction was validated by the leave-one-out cross-validation method. Without SNP marker screening, the accuracies of the genomic estimated breeding value (GEBV) of BW and FCR were 0.509 and 0.249, respectively, when using SLAF-seq, and the accuracies were 0.516 and 0.232, respectively, when using the SNP chip. With SNP marker screening by the PMS method, the accuracies of GEBV of the two traits were 0.671 and 0.499, respectively, when using SLAF-seq, and 0.605 and 0.422, respectively, when using the SNP chip. Our SNP marker screening method led to an increase of prediction accuracy by 0.089-0.250. With SNP marker screening by the GWAS method, the accuracies of genomic prediction for the two traits were also improved, but the gains of accuracy were less than the gains with PMS method for all traits. The results from this study indicate that our PMS method can improve the accuracy of GEBV, and that more accurate genomic prediction can be obtained from an increased number of genomic markers when using high-throughput sequencing in local broiler populations. Due to its lower genotyping cost, high-throughput sequencing could be a good alternative to SNP chips for genomic prediction in breeding programmes of local broiler populations.

19.
Heredity (Edinb) ; 124(4): 618, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32086444

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31921417

RESUMO

Background: Genotyping by sequencing (GBS) still has problems with missing genotypes. Imputation is important for using GBS for genomic predictions, especially for low depths, due to the large number of missing genotypes. Minor allele frequency (MAF) is widely used as a marker data editing criteria for genomic predictions. In this study, three imputation methods (Beagle, IMPUTE2 and FImpute software) based on four MAF editing criteria were investigated with regard to imputation accuracy of missing genotypes and accuracy of genomic predictions, based on simulated data of livestock population. Results: Four MAFs (no MAF limit, MAF ≥ 0.001, MAF ≥ 0.01 and MAF ≥ 0.03) were used for editing marker data before imputation. Beagle, IMPUTE2 and FImpute software were applied to impute the original GBS. Additionally, IMPUTE2 also imputed the expected genotype dosage after genotype correction (GcIM). The reliability of genomic predictions was calculated using GBS and imputed GBS data. The results showed that imputation accuracies were the same for the three imputation methods, except for the data of sequencing read depth (depth) = 2, where FImpute had a slightly lower imputation accuracy than Beagle and IMPUTE2. GcIM was observed to be the best for all of the imputations at depth = 4, 5 and 10, but the worst for depth = 2. For genomic prediction, retaining more SNPs with no MAF limit resulted in higher reliability. As the depth increased to 10, the prediction reliabilities approached those using true genotypes in the GBS loci. Beagle and IMPUTE2 had the largest increases in prediction reliability of 5 percentage points, and FImpute gained 3 percentage points at depth = 2. The best prediction was observed at depth = 4, 5 and 10 using GcIM, but the worst prediction was also observed using GcIM at depth = 2. Conclusions: The current study showed that imputation accuracies were relatively low for GBS with low depths and high for GBS with high depths. Imputation resulted in larger gains in the reliability of genomic predictions for GBS with lower depths. These results suggest that the application of IMPUTE2, based on a corrected GBS (GcIM) to improve genomic predictions for higher depths, and FImpute software could be a good alternative for routine imputation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...