Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Neural Regen Res ; 17(3): 601-607, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380900

RESUMO

Epidural stimulation of the spinal cord is a promising technique for the recovery of motor function after spinal cord injury. The key challenges within the reconstruction of motor function for paralyzed limbs are the precise control of sites and parameters of stimulation. To activate lower-limb muscles precisely by epidural spinal cord stimulation, we proposed a high-density, flexible electrode array. We determined the regions of motor function that were activated upon epidural stimulation of the spinal cord in a rat model with complete spinal cord, which was established by a transection method. For evaluating the effect of stimulation, the evoked potentials were recorded from bilateral lower-limb muscles, including the vastus lateralis, semitendinosus, tibialis anterior, and medial gastrocnemius. To determine the appropriate stimulation sites and parameters of the lower muscles, the stimulation characteristics were studied within the regions in which motor function was activated upon spinal cord stimulation. In the vastus lateralis and medial gastrocnemius, these regions were symmetrically located at the lateral site of L1 and the medial site of L2 vertebrae segment, respectively. The tibialis anterior and semitendinosus only responded to stimulation simultaneously with other muscles. The minimum and maximum stimulation threshold currents of the vastus lateralis were higher than those of the medial gastrocnemius. Our results demonstrate the ability to identify specific stimulation sites of lower muscles using a high-density and flexible array. They also provide a reference for selecting the appropriate conditions for implantable stimulation for animal models of spinal cord injury. This study was approved by the Animal Research Committee of Southeast University, China (approval No. 20190720001) on July 20, 2019.

2.
Pathol Oncol Res ; 27: 1609879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720757

RESUMO

Background: Biliary tract cancer is a highly lethal malignancy with poor clinical outcome. Accumulating evidence indicates targeted therapeutics may provide new hope for improving treatment response in BTC, hence better understanding the genomic profile is particularly important. Since tumor tissue may not be available for some patients, a complementary method is urgently needed. Circulating tumor DNA (ctDNA) provides a noninvasive means for detecting genomic alterations, and has been regarded as a promising tool to guide clinical therapies. Methods: Next-generation sequencing of 150 cancer-related genes was used to detect gene alterations in blood-derived ctDNA from 154 Chinese patients with BTC. Genomic alterations were analyzed and compared with an internal tissue genomic database and TCGA database. Results: 94.8% patients had at least one change detected in their ctDNA. The median maximum somatic allele frequency was 6.47% (ranging 0.1-34.8%). TP53 and KRAS were the most often mutated genes. The frequencies of single nucleotide variation in commonly mutated genes in ctDNA were similar to those detected in tissue samples, TP53 (35.1 vs. 40.4%) and KRAS (20.1 vs. 22.6%). Pathway analysis revealed that mutated genes were mapped to several key pathways including PI3K-Akt, p53, ErbB and Ras signaling pathway. In addition, patients harboring LRP1B, TP53, and ErbB family mutations presented significantly higher tumor mutation burden. Conclusions: These findings demonstrated that ctDNA testing by NGS was feasible in revealing genomic changes and could be a viable alternative to tissue biopsy in patients with metastatic BTC.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34748495

RESUMO

Walking disorders are common in post-stroke. Body weight support (BWS) systems have been proposed and proven to enhance gait training systems for recovering in individuals with hemiplegia. However, the fixed weight support and walking speed increase the risk of falling and decrease the active participation of the subjects. This paper proposes a strategy to enhance the efficiency of BWS treadmill training. It consists in regulating the height of the BWS system to track the height of the subject's center of mass (CoM), whereby the CoM is estimated through a long-short term memory (LSTM) network and a locomotion recognition system. The LSTM network takes the walking speed, body-height to leg-length ratio, hip and knee joint angles of the hemiplegic subjects' non-paretic side from the locomotion recognition system as input signals and outputs the CoM height to a BWS treadmill training robot. Besides, the hip and knee joints' ranges of motion are increased by 34.54% and 25.64% under the CoM height regulation compared to the constant weight support, respectively. With the CoM height regulation strategy, the stance phase duration of the paretic side is significantly increased by 14.6% of the gait cycle, and the symmetry of the gait is also promoted. The CoM height kinematics by adjustment strategy is in good agreement with the mean values of the 14 non-disabled subjects, which demonstrated that the adjustment strategy improves the stability of CoM height during the training.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Caminhada , Teste de Esforço , Terapia por Exercício , Marcha , Humanos
4.
PLoS One ; 16(11): e0259798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780519

RESUMO

Protein posttranslational modifications (PTMs) regulate the biological processes of human diseases by genetic code expansion and cellular pathophysiology regulation; however, system-wide changes in PTM levels in the intracerebral hemorrhage (ICH) brain remain poorly understood. Succinylation refers to a major PTM during the regulation of multiple biological processes. In this study, according to the methods of quantitative succinyllysine proteomics based on high-resolution mass spectrometry, we investigated ICH-associated brain protein succinyllysine modifications and obtained 3,680 succinylated sites and quantified around 3,530 sites. Among them, 25 succinyllysine sites on 23 proteins were upregulated (hypersuccinylated), whereas 13 succinyllysine sites on 12 proteins were downregulated (hyposuccinylated) following ICH. The cell component enrichment analysis of these succinylproteins with significant changes showed that 58.3% of the hyposuccinylated proteins were observed in the mitochondria, while the hyper-succinylproteins located in mitochondria decreased in the percentage to about 35% in ICH brains with a concomitant increase in the percentage of cytoplasm to 30.4%. Further bioinformatic analysis showed that the succinylproteins were mostly mitochondria and synapse-related subcellular located and involved in many pathophysiological processes, like metabolism, synapse working, and ferroptosis. Moreover, the integrative analysis of our succinylproteomics data and previously published transcriptome data showed that the mRNAs matched by most differentially succinylated proteins were especially highly expressed in neurons, endothelial cells, and astrocytes. Our study uncovers some succinylation-affected processes and pathways in response to ICH brains and gives us novel insights into understanding pathophysiological processes of brain injury caused by ICH.

5.
Phys Rev Lett ; 127(18): 180502, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767431

RESUMO

We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light source is developed, exploring the idea of stimulated emission of squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. The obtained samples are efficiently validated by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to ∼10^{43}, and a sampling rate ∼10^{24} faster than using brute-force simulation on classical supercomputers.

6.
J Environ Manage ; 302(Pt A): 114044, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34735829

RESUMO

In order to solve the environmental problems caused by greenhouse gas emissions, cellulosenanofiber (CNF)/polyvinyl alcohol (PVA)/graphene oxide (GO) aerogel was obtained by step-by-step heating, tert-butanol replacement, freeze-drying, and high-temperature activation in this paper. The micromorphology, specific surface area, pore size distribution, and thermal stability of the prepared aerogels were analyzed by scanning electron microscopy, automatic surface area and porosity analysis, and thermo-gravimetric analysis. The interaction state and adsorption mechanism of CO2 and aerogel physical adsorption were described by Materials Studio simulation. The results showed that the adsorption process conformed to the Langmuir adsorption isotherm. After carbonization, the thermal stability of the aerogel was good (mass loss rate <1%). With the increase of GO content, its specific surface area increased (392.41 m2/g) and CO2 adsorption capacity increased (432.76 cm3/g at 273 K). The simulation results show that hydrogen bond energy and van der Waals adsorption are the main factors that help in adsorption of CO2 on the surface aerogel, and electrostatic adsorption is the secondary adsorption factor. The application of green material carbon-based aerogels is also in line with the concept of sustainable development.

7.
Front Surg ; 8: 709017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604294

RESUMO

Introduction: The aim of this study was to select qualified patients with hepatocellular carcinoma (HCC) who underwent right hepatectomy (RH) via intraoperative indocyanine green retention test at 15 min (ICG-R15) of the left hemiliver, which prevents severe posthepatectomy liver failure (PHLF). Methods: Twenty HCC patients who were preoperatively planned to undergo RH were enrolled. Intraoperative ICG-R15 of left hemiliver was measured after the right Glissonean pedicle was completely blocked. Patients then underwent RH if intraoperative ICG-R15 was ≤ 10%. Otherwise, patients underwent staged RH (SRH), either associating liver partitioning and portal vein ligation for staged hepatectomy (ALPPS) or portal vein ligation (PVL), followed by stage-2 RH. The comparison group consisted of patients with a ratio of standard left liver volume (SLLV) of > 40% and preoperative ICG-R15 ≤ 10% who underwent RH. The clinical outcomes of these two groups were compared. Results: Of the 20 patients, six underwent stage-1 RH, six underwent ALPPS, five underwent PVL followed by stage-2 RH, and three failed to proceed to stage-2 RH after PVL. No significant differences were found among the 17 patients who underwent stage-1 or stage-2 RH in the study group, the 19 patients in the comparison group, the 11 patients in the stage-2 RH group, and the six patients in the stage-1 RH group in incidences of PHLF, postoperative complications, hospital stay, and HCC recurrence within 1 year after RH. Compared with the stage-1 ALPPS group, the mean operative time and blood loss of the stage-1 PVL group were significantly less (p <0.001 and p = 0.022, respectively). The stage-1 PVL group had a significantly longer waiting-time (43.4 vs. 14.0 days, p = 0.016) than the stage-1 ALPPS group to proceed to stage-2 RH. After stage-2 RH, tumor recurrence within 1 year was 20% (1/5) in patients after PVL and 50% (3/6) after stage-1 ALPPS. Conclusions: Intraoperative ICG-R15 ≤ 10% of left hemiliver was valuable in intraoperative decision-making for patients who were planned to undergo RH. There is a possibility that stage-1 PVL might help to select patients with more favorable biological behavior to undergo stage-2 RH.

8.
Oncogene ; 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642500

RESUMO

Copy number alterations are crucial for gastric cancer (GC) development. In this study, Tocopherol alpha transfer protein-like (TTPAL) was identified to be highly amplified in our primary GC cohort (30/86). Multivariate analysis showed that high TTPAL expression was correlated with the poor prognosis of GC patients. Ectopic expression of TTPAL promoted GC cell proliferation, migration, and invasion in vitro and promoted murine xenograft tumor growth and lung metastasis in vivo. Conversely, silencing of TTPAL exerted significantly opposite effects in vitro. Moreover, RNA-sequencing and co-immunoprecipitation (Co-IP) followed by liquid chromatograph-mass spectrometry (LC-MS) identified that TTPAL exerted oncogenic functions via the interaction of Nicotinamide-N-methyl transferase (NNMT) and activated PI3K/AKT signaling pathway. Collectively, TTPAL plays a pivotal oncogenic role in gastric carcinogenesis through promoting PI3K/AKT pathway via cooperating with NNMT. TTPAL may serve as a prognostic biomarker of patients with GC.

9.
J Am Chem Soc ; 143(41): 17128-17135, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612646

RESUMO

Supramolecular copolymers formed by the noncovalent synthesis of multiple components expand the complexity of functional molecular systems. However, varying the composition and microstructure of copolymers through tuning the interactions between building blocks remains a challenge. Here, we report a remarkable discovery of the temperature-dependent supramolecular copolymerization of the two chiral monomers 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tribenzamide (S-T) and 4,4',4″-(benzene-1,3,5-triyl)tribenzamide (S-B). We first demonstrate in the homopolymerization of the two individual monomers that a subtle change from the central triazine to benzene in the chemical structure of the monomers significantly affects the properties of the resulting homopolymers in solution. Homopolymers formed by S-T exhibit enhanced stability in comparison to S-B. More importantly, through a combination of spectroscopic analysis and theoretical simulation, we reveal the complex process of copolymerization: S-T aggregates into homopolymers at elevated temperature, and upon slow cooling S-B gradually intercalates into the copolymers, to finally give copolymers with almost 80% alternating bonds at 10 °C. The formation of the predominantly alternating copolymers is plausibly contributed by preferred heterointeractions between triazine and benzene cores in S-T and S-B, respectively, at lower temperatures. Overall, this work unravels the complexity of a supramolecular copolymerization process where an intermediate heterointeraction (higher than one homointeraction and lower than the other homointeraction) presents and proposes a general method to elucidate the microstructures of copolymers responsive to temperature changes.

10.
Biomaterials ; 279: 121182, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688987

RESUMO

The clinical benefit of PD-1/PD-L1 blockade immunotherapy is substantially restricted by insufficient infiltration of T lymphocytes into tumors and compromised therapeutic effects due to immune-related adverse events following systemic administration. Some chemotherapeutic agents have been reported to trigger tumor-associated T cell responses, providing a promising strategy to achieve potent immune activation in a synergistic manner with PD-1 blockade immunotherapy. In light of this, a localized chemoimmunotherapy system was developed using an anti-cancer drug-based supramolecular polymer (SP) hydrogel to "re-edit" the host's immune system to combat cancer. This in situ forming injectable aPD1/TT6 SP hydrogel serves as a drug-delivery depot for sustained release of bioactive camptothecin (CPT) and aPD1 into the tumor microenvironment, priming the tumor for robust infiltration of tumor-associated T cells and subsequently prompting a response to the immune checkpoint blockade. Our in vivo results demonstrate that this chemoimmunotherapy hydrogel provokes a long-term and systemic anticancer T cell immune response, which elicits tumor regression while also inhibiting tumor recurrence and potential metastasis.

11.
J Am Chem Soc ; 143(44): 18446-18453, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34711048

RESUMO

A fundamental goal in the noncovalent synthesis of ordered supramolecular polymers (SPs) is to achieve precise control over their size and size distribution; however, the reversible nature of noncovalent interactions often results in formation of living SPs with high dispersity in length. We report here on the self-limiting supramolecular polymerization (SPZ) of a series of multiarmed amphiphiles with propagation-attenuated reactivities that can automatically terminate the polymerization process, enabling effective control in both lengths and polydispersity. Through incorporating multiarmed oligoethylene-glycol (OEG) onto a quadratic aromatic segment, the lengths of the resultant SPs can be tuned from ∼1 µm to 130 and 50 nm with a polydispersity index of ∼1.2 for the last two SPs. We believe that the level of chain frustration of the multiarmed OEG segments, determined by both the number of arms and the degree of polymerization, poses physical and entropic constrains for supramolecular propagation to exceed a threshold length.

12.
ESC Heart Fail ; 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34585531

RESUMO

AIMS: Predicting the risk of malignant arrhythmias (MA) in hospitalized patients with heart failure (HF) is challenging. Machine learning (ML) can handle a large volume of complex data more effectively than traditional statistical methods. This study explored the feasibility of ML methods for predicting the risk of MA in hospitalized HF patients. METHODS AND RESULTS: We evaluated the baseline data and MA events of 2794 hospitalized HF patients in the HF cohort in Anhui Province and randomly divided the study population into training and validation sets in a 7:3 ratio. The Lasso-logistic regression, multivariate adaptive regression splines (MARS), classification and regression tree (CART), random forest (RF), and eXtreme gradient boosting (XGBoost) algorithms were used to construct risk prediction models in the training set, and model performance was verified in the validation set. The area under the receiver operating characteristic curve (AUC) and Brier score were employed to evaluate the discrimination and calibration of the model, respectively. Clinical utility of the Lasso-logistic regression model was analysed using decision curve analysis (DCA). The median (Q1, Q3) age of the study population was 70 (61, 77) years, and 39.5% were female. MA events occurred in 117 patients (4.2%) during hospitalization. In the training set (n = 1964), the AUC of the XGBoost model was 0.998 [95% confidence interval (CI) 0.997-1.000], which was higher than the other models (all P < 0.001). In the validation set (n = 830), there was no significant difference in AUC of Lasso-logistic model 1 [AUC: 0.867 (95% CI 0.819-0.915)], Lasso-logistic model 2 [AUC: 0.828 (95% CI 0.764-0.892)], MARS model [AUC: 0.852 (95% CI 0.793-0.910)], RF model [AUC: 0.804 (95% CI 0.726-0.881)], and XGBoost model [AUC: 0.864 (95% CI 0.810-0.918); all P > 0.05], which were higher than that of CART model [AUC: 0.743 (95% CI 0.661-0.824); all P < 0.05]. Brier scores for all prediction models were less than 0.05. DCA results showed that the Lasso-logistic model had a net clinical benefit. Oral antiarrhythmic drug, left bundle branch block, serum magnesium, d-dimer, and random blood glucose were significant predictors in half or more of the models. CONCLUSIONS: The current study findings suggest that ML models based on the Lasso-logistic regression, MARS, RF, and XGBoost algorithms can effectively predict the risk of MA in hospitalized HF patients. The Lasso-logistic model had better clinical interpretability and ease of use than the other models.

13.
NPJ Digit Med ; 4(1): 136, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526602

RESUMO

We show that heart rate enabled wearable devices can be used to measure respiratory rate. Respiration modulates the heart rate creating excess power in the heart rate variability at a frequency equal to the respiratory rate, a phenomenon known as respiratory sinus arrhythmia. We isolate this component from the power spectral density of the heart beat interval time series, and show that the respiratory rate thus estimated is in good agreement with a validation dataset acquired from sleep studies (root mean squared error = 0.648 min-1, mean absolute error = 0.46 min-1, mean absolute percentage error = 3%). We use this respiratory rate algorithm to illuminate two potential applications (a) understanding the distribution of nocturnal respiratory rate as a function of age and sex, and (b) examining changes in longitudinal nocturnal respiratory rate due to a respiratory infection such as COVID-19. 90% of respiratory rate values for healthy adults fall within the range 11.8-19.2 min-1 with a mean value of 15.4 min-1. Respiratory rate is shown to increase with nocturnal heart rate. It also varies with BMI, reaching a minimum at 25 kg/m2, and increasing for lower and higher BMI. The respiratory rate decreases slightly with age and is higher in females compared to males for age <50 years, with no difference between females and males thereafter. The 90% range for the coefficient of variation in a 14 day period for females (males) varies from 2.3-9.2% (2.3-9.5%) for ages 20-24 yr, to 2.5-16.8% (2.7-21.7%) for ages 65-69 yr. We show that respiratory rate is often elevated in subjects diagnosed with COVID-19. In a 7 day window from D-1 to D+5 (where D0 is the date when symptoms first present, for symptomatic individuals, and the test date for asymptomatic cases), we find that 36.4% (23.7%) of symptomatic (asymptomatic) individuals had at least one measurement of respiratory rate 3 min-1 higher than the regular rate.

14.
Front Robot AI ; 8: 702845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350214

RESUMO

A significant challenge for the control of a robotic lower extremity rehabilitation exoskeleton is to ensure stability and robustness during programmed tasks or motions, which is crucial for the safety of the mobility-impaired user. Due to various levels of the user's disability, the human-exoskeleton interaction forces and external perturbations are unpredictable and could vary substantially and cause conventional motion controllers to behave unreliably or the robot to fall down. In this work, we propose a new, reinforcement learning-based, motion controller for a lower extremity rehabilitation exoskeleton, aiming to perform collaborative squatting exercises with efficiency, stability, and strong robustness. Unlike most existing rehabilitation exoskeletons, our exoskeleton has ankle actuation on both sagittal and front planes and is equipped with multiple foot force sensors to estimate center of pressure (CoP), an important indicator of system balance. This proposed motion controller takes advantage of the CoP information by incorporating it in the state input of the control policy network and adding it to the reward during the learning to maintain a well balanced system state during motions. In addition, we use dynamics randomization and adversary force perturbations including large human interaction forces during the training to further improve control robustness. To evaluate the effectiveness of the learning controller, we conduct numerical experiments with different settings to demonstrate its remarkable ability on controlling the exoskeleton to repetitively perform well balanced and robust squatting motions under strong perturbations and realistic human interaction forces.

15.
Cell Mol Neurobiol ; 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34460038

RESUMO

It is unclear how Toll-like receptor (TLR) 4 signaling affects protein succinylation in the brain after intracerebral hemorrhage (ICH). Here, we constructed a mouse ICH model to investigate the changes in ICH-associated brain protein succinylation, following a treatment with a TLR4 antagonist, TAK242, using a high-resolution mass spectrometry-based, quantitative succinyllysine proteomics approach. We characterized the prevalence of approximately 6700 succinylation events and quantified approximately 3500 sites, highlighting 139 succinyllysine site changes in 40 pathways. Further analysis showed that TAK242 treatment induced an increase of 29 succinyllysine sites on 28 succinylated proteins and a reduction of 24 succinyllysine sites on 23 succinylated proteins in the ICH brains. TAK242 treatment induced both protein hypersuccinylations and hyposuccinylations, which were mainly located in the mitochondria and cytoplasm. GO analysis showed that TAK242 treatment-induced changes in the ICH-associated succinylated proteins were mostly located in synapses, membranes and vesicles, and enriched in many cellular functions/compartments, such as metabolism, synapse, and myelin. KEGG analysis showed that TAK242-induced hyposuccinylation was mainly linked to fatty acid metabolism, including elongation and degradation. Moreover, a combined analysis of the succinylproteomic data with previously published transcriptome data revealed that most of the differentially succinylated proteins induced by TAK242 treatment were mainly distributed throughout neurons, astrocytes, and endothelial cells, and the mRNAs of seven and three succinylated proteins were highly expressed in neurons and astrocytes, respectively. In conclusion, we revealed that several TLR4 signaling pathways affect the succinylation processes and pathways in mouse ICH brains, providing new insights on the ICH pathophysiological processes. Data are available via ProteomeXchange with identifier PXD025622.

16.
Phytomedicine ; 91: 153654, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333328

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a clinical syndrome with reproductive and endocrine disorders. Berberine is a monomer from Chinese herbs such as Coptis chinensis, whose effect on improving ovulation and endometrial receptivity of PCOS is uncertain. PURPOSE: To evaluate the effect of berberine on improving PCOS and explore the mechanism. METHODS: The rat model of PCOS was induced by intraperitoneal injection of testosterone propionate. Then they was divided into model (Mod) group, low-dose of berberine (BL) group, high-dose of berberine (BH) group and metformin (Met) group as well as a control (Con) group was established. Ovary morphology, hormone level, glucolipid metabolism were measured. UID-mRNA-seq of ovary tissue was conducted to seek the mechanism of berberine on improving ovulation. Three biomarkers of endometrial receptivity were also examined in endometrium by immunohistochemistry. RESULTS: The number of cystic follicles was increased while the number of corpus luteum was decreased in the rats of Mod group. These changes could be reversed by high-dose of berberine intervention. Berberine could also decrease the levels of serum luteinizing hormone (LH) and total cholesterol (TC) in PCOS rats. Meanwhile, berberine improved the impairment of abnormal oral glucose tolerance without affecting fasting insulin level and Homeostasis model assessment-insulin resistance (HOMA-IR). Luteinizing hormone/ choriogonadotropin receptor (LHCGR) and cytochrome P450 Family 19 Subfamily A Member 1 (CYP19A1) were focused via RNA-seq of ovary. Protein expression in ovary and mRNA expression in granulosa cell of LHCGR and CYP19A1 were decreased in Mod group and rescued by the intervention of berberine. A decrease of endometrial thickness and an increase of integrin αvß3 and lysophosphatidic acid receptor 3 (LPAR3) protein expression were observed in Mod group, which could be also reversed by berberbine. CONCLUSIONS: Berberine could improve ovulation in PCOS and the mechanism might be associated with up-regulating LHCGR and CYP19A1. Berberine could also improve endometrial receptivity through down-regualting αvß3 and LPAR3.


Assuntos
Berberina , Ovulação/efeitos dos fármacos , Síndrome do Ovário Policístico , Animais , Berberina/farmacologia , Endométrio/efeitos dos fármacos , Feminino , Metformina , Síndrome do Ovário Policístico/tratamento farmacológico , Ratos
17.
Int J Biol Macromol ; 185: 959-965, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34229017

RESUMO

Raspberry pomace extracts (RPE) with different concentrations (0.5 g/L, 1.5 g/L and 3 g/L) were incorporated into pectin/sodium alginate/xanthan gum composite film (PAX) to prepare colorimetric raspberry films (PAXR5, PAXR15 and PAXR30). Fourier Transform Infrared and Scanning Electron Microscopy analysis showed RPE had good compatibility with PAX. Compared to PAX, the raspberry films had lower water vapor permeability and water swelling ratio, higher tensile strength, opacity and antioxidant capacity. The films presented a smoother surface and denser structure than PAX. Furthermore, PAXR15 had an excellent discoloration at pH 1-13, especially at pH 5-10, the color changes of PAXR15 from pink-red-brown-blue-dark green distinguished by the naked eyes. Therefore, it has the potential to become a pH-sensitive film used in monitoring protein-rich food freshness.


Assuntos
Alginatos/química , Pectinas/química , Polissacarídeos Bacterianos/química , Rubus/química , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
18.
Chin Med ; 16(1): 55, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238326

RESUMO

BACKGROUND: The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. METHODS: Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. RESULTS: The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. CONCLUSIONS: Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome.

19.
Phys Rev Lett ; 126(24): 246601, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34213928

RESUMO

The magnetic van der Waals crystals MnBi_{2}Te_{4}/(Bi_{2}Te_{3})_{n} have drawn significant attention due to their rich topological properties and the tunability by external magnetic field. Although the MnBi_{2}Te_{4}/(Bi_{2}Te_{3})_{n} family have been intensively studied in the past few years, their close relatives, the MnSb_{2}Te_{4}/(Sb_{2}Te_{3})_{n} family, remain much less explored. In this work, combining magnetotransport measurements, angle-resolved photoemission spectroscopy, and first principles calculations, we find that MnSb_{4}Te_{7}, the n=1 member of the MnSb_{2}Te_{4}/(Sb_{2}Te_{3})_{n} family, is a magnetic topological system with versatile topological phases that can be manipulated by both carrier doping and magnetic field. Our calculations unveil that its A-type antiferromagnetic (AFM) ground state stays in a Z_{2} AFM topological insulator phase, which can be converted to an inversion-symmetry-protected axion insulator phase when in the ferromagnetic (FM) state. Moreover, when this system in the FM phase is slightly carrier doped on either the electron or hole side, it becomes a Weyl semimetal with multiple Weyl nodes in the highest valence bands and lowest conduction bands, which are manifested by the measured notable anomalous Hall effect. Our work thus introduces a new magnetic topological material with different topological phases that are highly tunable by carrier doping or magnetic field.

20.
Int J Med Sci ; 18(13): 3026-3038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220331

RESUMO

Purpose: The study aimed to predict and explore the possible clinical value and mechanism of genetic markers in adrenal cortical carcinoma using a bioinformatics analysis method. Methods: The RNA-seqs and miRNAs data were downloaded from TCGA database to identify the differentially expressed genes and differentially expressed miRNAs. The hub-genes were screened by building protein-protein interaction sub-networks with 12 topological analysis methods. We conducted the receiver operating characteristic curve to elevate the diagnostic value of hub-genes in distinguishing the death and alive groups. The survival analysis of hub-genes and key miRNAs were conducted using Kaplan-Meier curves. Furthermore, most significant small molecules were identified as therapeutic candidates for adrenal cortical carcinoma by the CMap analysis. Results: Compared to survival group, we found 475 up-regulated genes and 354 genes and the key pathways leading to the death of different ACC individual patients. Then we used 12 topological analysis methods to found the most possible 22 hub-genes. Among these hub-genes, nine hub-genes (C3, CXCL5, CX3CR1, GRM8, HCAR2, HTR1B, SUCNR1, PTGER3 and SSTR1) could be used to distinguish the death and survival groups for patients. We also revealed that mRNA expressions of 12 genes (C3, CXCL8, CX3CR1, GNAT3, GNGT1, GRM8, HCAR2, HTR1B, HTR1D, PTGER3, SSTR1 and SUCNR1) and four key miRNAs (hsa-mir-330, hsa-mir-489, hsa-mir-508 and hsa-mir-513b) were related to survival. Three most small molecules were identified (H-9, AZ-628 and phensuximide) as potential therapeutic drugs for adrenal cortical carcinoma. Conclusion: The hub-genes expression was significant useful in adrenal cortical carcinoma, provide new diagnostic, prognosis and therapeutic approaches for adrenal cortical carcinoma. Furthermore, we also explore the possible miRNAs involved in regulation of hub-genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...