Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Infect Genet Evol ; : 105164, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34848355

RESUMO

The widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continuously impacts our economic and public health. The potential of emerging variants to increase transmissibility and evade vaccine-induced immunity lets us put more effort to research on viral mutations and explore the pathogenic haplotypes. In this study, we characterized the haplotype and sub-haplotype diversity of SARS-CoV-2 global variants in January-March and the areas with low and high COVID19 vaccination rates in May 2021 by analyzing viral proteome of complete genome sequences published. Phylogenetic tree analysis of the proteomes of SARS-CoV-2 variants with Neighbor-Joining and Maximum Parsimony methods indicated that haplotype 2 variant with nsp12 P323L and Spike D614G was dominant (98.81%), including new sub-haplotypes 2A_1 to 2A_3, 2B_1 to 2B_3, and 2C_1 to 2C_2 emerged post-one-year COVID-19 outbreak. In addition, the profiling of sub-haplotypes indicated that sub-haplotype 2A_1 with the mutations at N501Y, A570D, D614G, P681H, T716I, S982A, and D118H in Spike was over 58% in May 2021 in the high partly vaccinated rate group (US, Canada, and Germany). Meanwhile, the new haplotype 2C_3 bearing the mutations at EFR156-158del, T19R, A222V, L452R, T478K, and D614G in Spike occupied over 54.8% in May 2021 in the low partly vaccinated rate group (India, Malaysia, Taiwan, and Vietnam). Sub-haplotypes 2A_1 and 2C_3 had a meaningful alternation of ACE2-specific recognition site, neutralization epitopes, and furin cleavage site in SARS-CoV-2 Spike protein. The results discovered the haplotype diversity and new sub-haplotypes of SARS-CoV-2 variants post one-year pandemic in January-March 2021, showing the profiles of sub-haplotypes in the groups with low and high partly vaccinated rates in May 2021. The study reports the emergence of new SARS-CoV-2 sub-haplotypes during ongoing pandemic and vaccination in early 2021, which might help inform the response to vaccination strategies.

2.
Int J Biol Sci ; 17(15): 4396-4408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803506

RESUMO

Rationale: Focal segmental glomerulosclerosis (FSGS) is characterized by the dysfunction of "post-mitotic" podocytes. The reentry of podocytes in the cell cycle will ultimately result in cell death. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of anaphase-promoting complex (APC)/cyclosome, precisely controls the metaphase to anaphase transition and ordered cell cycle progression. However, the role of MAD2B in FSGS podocyte injury remains unknown. Methods: To explore MAD2B function in podocyte cell cycle reentry, we used conditional mutant mice lacking MAD2B selectively in podocytes in ADR-induced FSGS murine model. Additionally, KU-55933, a specific inhibitor of ataxia-telangiectasia mutated (ATM) was utilized in vivo and in vitro to explore the role of ATM in regulating MAD2B. Results: The expression of MAD2B in podocytes was dramatically increased in patients with FSGS and ADR-treated mice along with podocyte cell cycle reentry. Podocyte-specific knockout of MAD2B effectively attenuated proteinuria, podocyte injury, and prevented the aberrant cell cycle reentry. By bioinformatics analysis we revealed that ATM kinase is a key upstream regulator of MAD2B. Furthermore, inhibition of ATM kinase abolished MAD2B-driven cell cycle reentry and alleviated podocyte impairment in FSGS murine model. In vitro studies by site-directed mutagenesis and immunoprecipitation we revealed ATM phosphorylated MAD2B and consequently hampered the ubiquitination of MAD2B in a phosphorylation-dependent manner. Conclusions: ATM kinase-MAD2B axis importantly contributes to the cell cycle reentry of podocytes, which is a novel pathogenic mechanism of FSGS, and may shed light on the development of its therapeutic approaches.

3.
Front Plant Sci ; 12: 748209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721476

RESUMO

Candidatus Liberibacter asiaticus (CLas) is the causative agent of Huanglongbing (HLB), which has caused great economic losses to the citrus industry. The molecular mechanism of the host response to CLas in wild citrus germplasm has been reported less. Eighteen weeks after inoculation via grafting, all the CLas-inoculated Chongyi wild mandarin (Citrus reticulata) were positive and showed severe anatomical aberrations, suggesting its susceptibility to HLB. Transcriptomics and metabolomics analyses of leaves, barks, and roots from mock-inoculated (control) and CLas-inoculated seedlings were performed. Comparative transcriptomics identified 3,628, 3,770, and 1,716 differentially expressed genes (DEGs) between CLas-infected and healthy tissues in the leaves, barks, and roots, respectively. The CLas-infected tissues had higher transcripts per kilobase per million values and more genes that reached their maximal expression, suggesting that HLB might cause an overall increase in transcript accumulation. However, HLB-triggered transcriptional alteration showed tissue specificity. In the CLas-infected leaves, many DEGs encoding immune receptors were downregulated. In the CLas-infected barks, nearly all the DEGs involved in signaling and plant-pathogen interaction were upregulated. In the CLas-infected roots, DEGs encoding enzymes or transporters involved in carotenoid biosynthesis and nitrogen metabolism were downregulated. Metabolomics identified 71, 62, and 50 differentially accumulated metabolites (DAMs) in the CLas-infected leaves, barks and roots, respectively. By associating DEGs with DAMs, nitrogen metabolism was the only pathway shared by the three infected tissues and was depressed in the CLas-infected roots. In addition, 26 genes were determined as putative markers of CLas infection, and a hypothesized model for the HLB susceptibility mechanism in Chongyi was proposed. Our study may shed light on investigating the molecular mechanism of the host response to CLas infection in wild citrus germplasm.

4.
Bioorg Med Chem Lett ; 54: 128437, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737087

RESUMO

Dengue virus (DENV) causes about 50-100 million cases per year worldwide. However, there is still a big challenge in developing antiviral drugs against DENV infection. Some derivatives of alkaloid (-)-cytisine, like other alkaloid analogs, have been proposed for their antiviral potential. This study investigated antiviral activity and mechanisms of the cytisine derivatives, and discovered the structure-activity relationship against DENV. The antiviral assays were performed using one strain of DENV1 and DENV2, and two cell lines Vero E6 and A549. The structure-activity relationship of the effective compounds was also evaluated using combination of time-of-addition/removal assay and molecular docking. Compounds 3, 4, 12 (N-allylcytisine-3-thiocarbamide), 16, and 20 exhibited the high antiviral activity with IC50 values of lower than 3 µM against DENV1 and DENV2. Of them, the derivative 12 showed the highest antiviral activities against DENV1 (IC50 = 0.14 µM) and DENV-2 (IC50 = <0.1 µM), exhibiting the potent inhibition on virus attachment and entry stages. Meanwhile, the compounds 4 and 20 had a strong inhibition at the post-entry stage (IC50 = <0.1 µM). A correlation between the experimental pIC50 values and predicted pKi calculated by docking of compounds into DENV E protein was significant, correlating with the impact of compound 12 on the attachment stage, but compounds 4, and 20 on post-entry stage. The results provided the insight into the directions of synthetic modifications of starting (-)-cytisine as the inhibitors of DENV E protein at attachment and entry stages of DENV life cycle.

5.
Trials ; 22(1): 719, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666815

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain, diarrhea or constipation, and changes in defecation patterns. No organic disease is found to explain these symptoms by routine clinical examination. This study aims to investigate the efficacy and safety of acupuncture therapy for IBS patients compared with those of conventional treatments. We also aim to identify the optimal acupoint combination recommended for IBS and to clarify the clinical advantage of the "multiacupoint co-effect and synergistic effect." METHODS AND ANALYSIS: A total of 204 eligible patients who meet the Rome IV criteria for IBS will be randomly stratified into acupuncture group A, acupuncture group B, or the control group in a 1:1:1 ratio with a central web-based randomization system. The prespecified acupoints used in the control group will include bilateral Tianshu (ST25), Shangjuxu (ST37), Neiguan (PC6), and Zusanli (ST36). The prespecified acupoints used in experimental group A will include bilateral Tianshu (ST25), Shangjuxu (ST37), and Neiguan (PC6). The prespecified acupoints used in experimental group B will include bilateral Tianshu (ST25), Shangjuxu (ST37), and Zusanli (ST36). Each patient will receive 12 acupuncture treatments over 4 weeks and will be followed up for 4 weeks. The primary outcome is the IBS-Symptom Severity Scale (IBS-SSS) score. The secondary outcomes include the Bristol Stool Form Scale (BSFS), Work and Social Adjustment Score (WSAS), IBS-Quality of Life (IBS-QOL), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS) scores. Both the primary outcome and the secondary outcome measures will be collected at baseline, at 2 and 4 weeks during the intervention, and at 6 weeks and 8 weeks after the intervention. ETHICS AND DISSEMINATION: The entire project has been approved by the ethics committee of the Beijing University of Chinese Medicine (2020BZYLL0903). DISCUSSION: This is a multicenter randomized controlled trial for IBS in China. The findings may shed light on the efficacy of acupuncture as an alternative to conventional IBS treatment. The results of the trial will be disseminated in peer-reviewed publications. TRIAL REGISTRATION: Chinese Clinical Trials Register ChiCTR2000041215 . First registered on 12 December 2020. http://www.chictr.org.cn/ .


Assuntos
Terapia por Acupuntura , Síndrome do Intestino Irritável , Pontos de Acupuntura , Terapia por Acupuntura/efeitos adversos , Diarreia , Humanos , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/terapia , Estudos Multicêntricos como Assunto , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
6.
Front Med (Lausanne) ; 8: 749318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708059

RESUMO

Although the pathologic investigation of liver injury was observed in a couple of cases in China, the detailed description of liver histopathologic and ultrastructural changes in a relatively larger series of liver tissues from COVID-19 patients is lacking. Samples from the liver were obtained from 24 COVID-19 cases from February 1 to April 1, 2020. Light microscopy showed that all liver sections had different degrees of liver injury manifested as swelling of the hepatocytes, hepatocellular necrosis, steatosis, lobular inflammation, portal inflammation, dilatation of sinusoids, and so on. SARS-CoV-2 induced liver injury might be independent of pre-existing Schistosoma infection or obstructive cholestasis. Patients combined with respiratory failure had more severe hepatocellular necrosis and male patients were more susceptible to liver injury. Although coronavirus particles or viral inclusions were not detected in the liver tissues for all cases, vacuolar degenerations in hepatocytes, edematous of mitochondria with the disruption of cristae, and expansions of the endoplasmic reticulum were observed. In conclusion, pathologic changes of liver tissues provide us a further understanding of liver injury in COVID-19 patients. Changes in the liver seem to be related to the underlying diseases/conditions.

7.
BMC Psychiatry ; 21(1): 486, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607589

RESUMO

AIM/BACKGROUND: Even though dialectical behavior therapy (DBT) has received substantial empirical support in treating patients with borderline personality disorder (BPD), fewer studies have evaluated whether a brief DBT skills group may be effective in improving clinical outcomes in this population. Further, less is known regarding the feasibility and outcomes of DBT beyond Euro-American contexts. This paper describes outcomes from a pilot study examining the feasibility, acceptability, and clinical outcomes following completion of a shortened, 14-week DBT skills group in a sample of Muslim-majority BPD patients in Malaysia. METHODS: Twenty patients were recruited from a public hospital and attended DBT skills groups in an outpatient clinic. Participants completed measures assessing psychological symptoms, self-harm behaviors, suicidal ideation, emotion regulation difficulties, self-compassion, and well-being pre- and post-intervention. RESULTS: There were significant reductions in depressive symptoms, stress, and emotion regulation difficulties, as well as increases in self-compassion and well-being from pre- to post-intervention. A trend was found for decreases in frequency and types of non-suicidal self-harm behaviors, suicidal ideation, and anxiety symptoms. Qualitative content analyses of participants' feedback indicated that the vast majority of participants perceived a positive impact from the skills group, with mindfulness and distress tolerance being rated frequently as skills that were beneficial. CONCLUSION: These preliminary findings suggest that DBT skills training is feasible and acceptable in a Muslim-majority, low resource clinical setting, and holds promise in improving clinical outcomes among BPD patients in Malaysia.


Assuntos
Transtorno da Personalidade Borderline , Terapia do Comportamento Dialético , Terapia Comportamental , Transtorno da Personalidade Borderline/terapia , Estudos de Viabilidade , Humanos , Malásia , Projetos Piloto , Resultado do Tratamento
8.
Transl Stroke Res ; 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674144

RESUMO

We have previously demonstrated that deletion of activin receptor-like kinase 1 (Alk1) or endoglin in a fraction of endothelial cells (ECs) induces brain arteriovenous malformations (bAVMs) in adult mice upon angiogenic stimulation. Here, we addressed three related questions: (1) could Alk1- mutant bone marrow (BM)-derived ECs (BMDECs) cause bAVMs? (2) is Alk1- ECs clonally expended during bAVM development? and (3) is the number of mutant ECs correlates to bAVM severity? For the first question, we transplanted BM from PdgfbiCreER;Alk12f/2f mice (EC-specific tamoxifen-inducible Cre with Alk1-floxed alleles) into wild-type mice, and then induced bAVMs by intra-brain injection of an adeno-associated viral vector expressing vascular endothelial growth factor and intra-peritoneal injection of tamoxifen. For the second question, clonal expansion was analyzed using PdgfbiCreER;Alk12f/2f;confetti+/- mice. For the third question, we titrated tamoxifen to limit Alk1 deletion and compared the severity of bAVM in mice treated with low and high tamoxifen doses. We found that wild-type mice with PdgfbiCreER;Alk12f/2f BM developed bAVMs upon VEGF stimulation and Alk1 gene deletion in BMDECs. We also observed clusters of ECs expressing the same confetti color within bAVMs and significant proliferation of Alk1- ECs at early stage of bAVM development, suggesting that Alk1- ECs clonally expanded by local proliferation. Tamoxifen dose titration revealed a direct correlation between the number of Alk1- ECs and the burden of dysplastic vessels in bAVMs. These results provide novel insights for the understanding of the mechanism by which a small fraction of Alk1 or endoglin mutant ECs contribute to development of bAVMs.

9.
Nanotechnology ; 32(50)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34479216

RESUMO

This article introduces an innovative technique for achieving a giant magnetoresistance (GMR) switch with an adjustable sensing field range. A spin-valve (SV) patterned into a strip shape is grown on a specific (110)-cut Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) substrate. In the process of depositing films, a magnetic easy axis of the free layer in the SV is produced along the [001] direction (thex-axis) of the PMN-PT. This PMN-PT can produce a nonvolatile strain by using a positive voltage pulse. Accordingly, the magnetic moment of the free layer can be modulated to they-axis by the strain-mediated magnetoelectric coupling effect produced in the SV/PMN-PT heterostructure. Furthermore, a negative voltage pulse can release the strain and revert the magnetic moment to the initial [001] direction. The effective field along the [1-10] direction produced by the nonvolatile strain can modulate the easy axis of the free layer, changing it from thex-axis to they-axis. Therefore, large and small switching fields are achieved in a bipolar GMR switch. Furthermore, by applying positive and negative voltage pulses at appropriate moments, two asymmetrical switching field ranges are obtained. Thus, a GMR switch with four adjustable switching field ranges can be obtained. The proposed modulating model is flexible and can meet the requirements of specific and different application systems. The proposed design reveals a great potential for the application to the internet of things and the development of low-power and high-efficient magnetoresistive sensors.

10.
Brain Hemorrhages ; 2(1): 49-56, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34541474

RESUMO

Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-ß (PDGFR-ß), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.

11.
Nat Commun ; 12(1): 5454, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526512

RESUMO

Chlamydia trachomatis infection causes severe inflammatory disease resulting in blindness and infertility. The pathophysiology of these diseases remains elusive but myeloid cell-associated inflammation has been implicated. Here we show NLRP3 inflammasome activation is essential for driving a macrophage-associated endometritis resulting in infertility by using a female mouse genital tract chlamydial infection model. We find the chlamydial parasitophorous vacuole protein CT135 triggers NLRP3 inflammasome activation via TLR2/MyD88 signaling as a pathogenic strategy to evade neutrophil host defense. Paradoxically, a consequence of CT135 mediated neutrophil killing results in a submucosal macrophage-associated endometritis driven by ATP/P2X7R induced NLRP3 inflammasome activation. Importantly, macrophage-associated immunopathology occurs independent of macrophage infection. We show chlamydial infection of neutrophils and epithelial cells produce elevated levels of extracellular ATP. We propose this source of ATP serves as a DAMP to activate submucosal macrophage NLRP3 inflammasome that drive damaging immunopathology. These findings offer a paradigm of sterile inflammation in infectious disease pathogenesis.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neutrófilos/imunologia , Receptores Purinérgicos P2X7/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Chlamydia/fisiologia , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Modelos Animais de Doenças , Feminino , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
12.
ACS Appl Mater Interfaces ; 13(39): 46717-46726, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569244

RESUMO

The state-of-the-art solar-thermal evaporators demonstrating high energy utilization efficiency, a high evaporation rate, and salt rejection are highly desirable in solar-driven low-energy water purification/harvesting. Herein, a novel Janus solar evaporator is constructed by loading polypyrrole (PPy) nanobelts on the polyvinyl alcohol (PVA) hydrogel. The PPy nanobelts present a high solar absorption of 98.3%, leading to a localized solar-thermal efficiency of 82.5% when insulated from bulk water by the PVA hydrogel. The porous PVA hydrogel and the hydrophilic PPy nanobelts enable the efficient three-dimensional water transport. Taking advantages of the synergistic effect in the water-energy nexus, the Janus PPy nanobelt@PVA hydrogel evaporator evaporates water with a high rate of 2.26 kg m-2 h-1 via 80.1% solar energy from 1 sun irradiance with a low PPy loading of ∼3 mg cm-2 even at a rate of 2.64 kg m-2 h-1 via 96.3% solar energy for a biomimetic conical evaporator. The Janus evaporator presents superior salt-resistant desalination and contaminant purification performance in seawater and sewage. Furthermore, a portable solar-thermal purifier equipped with the Janus evaporator desalts real seawater far above the drinking water standard with over a 99.9% salt rejection rate and eliminates 95.8% of chemical oxygen demand in real sewage, highlighting its potential for advanced clean water harvesting.

13.
Acta Pharmacol Sin ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552216

RESUMO

Despite improvements in cardiovascular disease (CVD) outcomes by cholesterol-lowering statin therapy, the high rate of CVD is still a great concern worldwide. Dehydrocorydaline (DHC) is an alkaloidal compound isolated from the traditional Chinese herb Corydalis yanhusuo. Emerging evidence shows that DHC has anti-inflammatory and antithrombotic benefits, but whether DHC exerts any antiatherosclerotic effects remains unclear. Our study revealed that intraperitoneal (i.p.) injection of DHC in apolipoprotein E-deficient (ApoE-/-) mice not only inhibited atherosclerosis development but also improved aortic compliance and increased plaque stability. In addition, DHC attenuated systemic and vascular inflammation in ApoE-/- mice. As macrophage inflammation plays an essential role in the pathogenesis of atherosclerosis, we next examined the direct effects of DHC on bone marrow-derived macrophages (BMDMs) in vitro. Our RNA-seq data revealed that DHC dramatically decreased the levels of proinflammatory gene clusters. We verified that DHC significantly downregulated proinflammatory interleukin (IL)-1ß and IL-18 mRNA levels in a time- and concentration-dependent manner. Furthermore, DHC decreased lipopolysaccharide (LPS)-induced inflammation in BMDMs, as evidenced by the reduced protein levels of CD80, iNOS, NLRP3, IL-1ß, and IL-18. Importantly, DHC attenuated LPS-induced activation of p65 and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Thus, we conclude that DHC ameliorates atherosclerosis in ApoE-/- mice by inhibiting inflammation, likely by targeting macrophage p65- and ERK1/2-mediated pathways.

14.
J Chin Med Assoc ; 84(11): 987-992, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524226

RESUMO

Oral cancers are the seventh most common cancer globally. While progresses in oral cancer treatment have been made, not all patients respond to these therapies in the same way. To overcome this difficulty, numerous studies have been devoted to identifying biomarkers, which enable early identification of patients who may benefit from a particular treatment modality or at risk for poor prognosis. Biomarkers are protein molecules, gene expression, DNA variants, or metabolites that are derived from tumors, adjacent normal tissue or bodily fluids, which can be acquired before treatment and during follow-up, thus extending their use to the evaluation of cancer progression and prediction of treatment outcome. In this review, we employed a basic significance level (<0.05) as the minimal requirement for candidate biomarkers. Effect sizes of the biomarkers in terms of odds ratio, hazard ratio, and area under the receiver operating characteristic curves were subsequently used to evaluate the potential of their clinical use. We identified the CCND1 from the tumor, human papillomavirus, HSP70, and IL-17 from the peripheral blood, and high density of CD45RO+ tumor-infiltrating lymphocytes as the clinically relevant biomarkers for oral cancers.

15.
Front Genet ; 12: 700398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349786

RESUMO

Rare-earth pneumoconiosis (REP) is the main occupational disease of rare earth exposed workers and there is no specific treatment. In this study, we performed high-throughput sequencing on the plasma of nine REP to describe and analyze the expression profiles of long non-coding RNA (lncRNA), micro RNA (miRNA) and mRNA and investigate their regulatory networks. Our results identified a total of 125 lncRNAs, 5 miRNAs, and 82 mRNAs were differentially expressed in the plasma of patients with REP. Furthermore, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed non-coding RNAs (ncRNA). We found the differential expression of ncRNA are mainly related to the response of cells to stimulation, Hedgehog signaling pathway and so on. We also constructed lncRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in REP. We found that in the competitive endogenous RNA (ceRNA) networks, lncRNA acts as a sponge of miRNA to regulate the target gene. The expression results were verified by qRT-PCR and the protein interaction networks of differentially expressed genes were constructed via the STRING database. OncoLnc online platform was used to do the lung cancer survival analysis among the top five mRNA analyzed by Protein-protein interaction (PPI) network analysis. We found miR-16-2-3p may used as biomarker for REP, because it is closely related to the occurrence and prognosis of REP through inflammatory reaction and in lung squamous cell carcinoma, its expression levels were positively correlated with the overall survival rate of patients.

16.
Thorax ; 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417352

RESUMO

BACKGROUND: Growing evidence suggests that compromised lung health may be linked to cardiovascular disease. However, little is known about its association with sudden cardiac death (SCD). OBJECTIVES: We aimed to assess the link between impaired lung function, airflow obstruction and risk of SCD by race and gender in four US communities. METHODS: A total of 14 708 Atherosclerosis Risk in Communities (ARIC) study participants who underwent spirometry and were asked about lung health (1987-1989) were followed. The main outcome was physician-adjudicated SCD. Fine-Gray proportional subdistribution hazard models with Firth's penalised partial likelihood correction were used to estimate the HRs. RESULTS: Over a median follow-up of 25.4 years, 706 (4.8%) subjects experienced SCD. The incidence of SCD was inversely associated with FEV1 in each of the four race and gender groups and across all smoking status categories. After adjusting for multiple measured confounders, HRs of SCD comparing the lowest with the highest quintile of FEV1 were 2.62 (95% CI 1.62 to 4.26) for white males, 1.80 (95% CI 1.03 to 3.15) for white females, 2.07 (95% CI 1.05 to 4.11) for black males and 2.62 (95% CI 1.21 to 5.65) for black females. The above associations were consistently observed among the never smokers. Moderate to very severe airflow obstruction was associated with increased risk of SCD. Addition of FEV1 significantly improved the predictive power for SCD. CONCLUSIONS: Impaired lung function and airflow obstruction were associated with increased risk of SCD in general population. Additional research to elucidate the underlying mechanisms is warranted.

17.
J Chem Phys ; 155(7): 071101, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418929

RESUMO

Measuring the catalytical activities of single catalysts in the case of high turnover frequency (TOF, realistic conditions) is highly desirable to accurately evaluate the functional heterogeneities among individuals and to understand the catalytic mechanism. Herein, we report a microwell array-based method to in operando measure the photocatalytic kinetics of single CdS nanoparticles (NPs) with high TOF. This was realized by sealing individual CdS NPs into separated micrometer-sized polydimethylsiloxane wells, thus eliminating the diffusion of products among individuals in the case of high concentration of reactants. This method allowed us to monitor the activities of single catalysts with an average TOF up to 2.1 × 105 s-1. Interestingly, two types of catalytical behaviors were revealed during single CdS photocatalysis: a rapid decline in activity for most CdS NPs and an initial increase in activity followed by a decrease for a minor population of individuals. The developed method will facilitate the investigation of catalytic activities of single particles under realistic conditions and hold great potential in the fields of photo/electro-catalysts, enzymes, functional bacteria, and so on.

18.
Transl Pediatr ; 10(7): 1757-1764, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430424

RESUMO

Background: Electrical cardiometry (EC) is a continuous, non-invasive method for measuring cardiac output (CO). This study investigates the correlation and consistency of CO values in newborns obtained by using EC and M-mode echocardiography (Teichholz formula). Methods: In this prospective observational study, simultaneous measurement of CO was implemented with EC (COec) and M-mode echocardiography (COm) in neonates. The absolute values of CO measured by the two methods were converted to Z-scores. Following that, Pears's correlation analyses and the Bland-Altman index were employed to analyze the correlation and consistency of COec Z-scores and COm Z-scores. Results: A total of 136 neonates (93 preterm infants) were enrolled in this study, and EC and M-mode echocardiography comparative studies were conducted 155 times. The mean value of COec and COm demonstrated significant statistical differences (P<0.001). A moderate correlation (r=0.601; P<0.001) was found between the two methods. The Bland-Altman index value was 3.2%, which remained less than 5% in the low birth weight (LBW) (2.1%), non-LBW (3.4%), spontaneous respiration (3.1%), nasal continuous positive airway pressure (nCPAP) (4.0%), mechanical ventilation (2.9%), hemodynamic significance of the patent ductus arteriosus (hsPDA) (4.3%), and non-hsPDA (3.7%) groups, respectively. Conclusions: Although the absolute values of CO measured by EC and M-mode echocardiography were not interchangeable, the distribution of CO in EC and M-mode echocardiography was similar.

19.
Anal Chem ; 93(35): 11915-11919, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34424667

RESUMO

Loading of cocatalysts through photodeposition has been considered as one of the most promising methods to improve the photocatalytic activities of semiconductors, because of the advantages of intimate contact, easy preparation, and site-directed loading. While extensive efforts have been made to characterize the cocatalysts after synthesis, the growth kinetics of cocatalysts during photodeposition is largely a black box, thus leading to relatively empirical optimizations on the loading strategies of cocatalysts to date. Herein, we dynamically imaged the photodeposition of single cocatalysts on semiconductors via a wide-field fluorescence (FL) microscope, utilizing g-C3N4 sheets and CdS nanowires as models. This capability was based on the quenching effect of cocatalysts on the intrinsic FL emission of semiconductors. Single cocatalyst study revealed that FL emission of photocatalysts decayed monoexponentially during photodeposition, and cocatalysts possessed a self-limited growth. The significant heterogeneities (differences) of cocatalysts during photodeposition were also uncovered, regarding the apparent induction time, deposition rate and FL quenching amplitude. These informations were difficult to be accessed using the ex situ characterization. Programmable photodeposition and dissolution of CoxP were also realized, utilizing a focused laser beam with a spot size of <1 µm. This work explored the hidden details of the growth of cocatalysts during photodeposition, opening up a new avenue to optimize photodeposition for rationally designing more efficient photocatalysts.


Assuntos
Nanopartículas , Semicondutores , Catálise , Luz , Imagem Óptica
20.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204423

RESUMO

The exploration of nonhazardous nanoparticles to fabricate a template-driven superhydrophobic surface is of great ecological importance for oil/water separation in practice. In this work, nano-hydroxyapatite (nano-HAp) with good biocompatibility was easily developed from discarded oyster shells and well incorporated with polydimethylsiloxane (PDMS) to create a superhydrophobic surface on a polyurethane (PU) sponge using a facile solution-immersion method. The obtained nano-HAp coated PU (nano-HAp/PU) sponge exhibited both excellent oil/water selectivity with water contact angles of over 150° and higher absorption capacity for various organic solvents and oils than the original PU sponge, which can be assigned to the nano-HAp coating surface with rough microstructures. Moreover, the superhydrophobic nano-HAp/PU sponge was found to be mechanically stable with no obvious decrease of oil recovery capacity from water in 10 cycles. This work presented that the oyster shell could be a promising alternative to superhydrophobic coatings, which was not only beneficial to oil-containing wastewater treatment, but also favorable for sustainable aquaculture.


Assuntos
Exoesqueleto/química , Durapatita/química , Recuperação e Remediação Ambiental/métodos , Exoesqueleto/metabolismo , Animais , Carbonato de Cálcio/química , Dimetilpolisiloxanos/química , Durapatita/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Óleos/química , Ostreidae/metabolismo , Poluição por Petróleo/análise , Poluição por Petróleo/prevenção & controle , Solventes , Propriedades de Superfície , Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...