Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 8(51): 35163-35171, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27977117


The commercial applications of Mn3O4 in lithium ion batteries (LIBs) are greatly restricted because of the low electrical conductivity and poor cycling stability at high current density. To overcome these drawbacks, mesoporous Mn3O4@C networks were designed and synthesized via an improved bake-in-salt method using NaCl as the assistant salt, and without the protection of inert gas. The added NaCl plays a versatile role during the synthetic process, including the heat conducting medium, removable hard template and protective layer. Because of the homogeneous distribution of Mn3O4 nanoparticles within the carbon matrix, the as-prepared Mn3O4@C networks show excellent cycling stability in LIBs. After cycling for 950 times at a current density of 1 A g-1, the discharge capacity of the as-prepared Mn3O4@C networks is determined to be 754.4 mA h g-1, showing superior cycling stability as compared to its counterparts. The valuable and promising method, simple synthetic procedure and excellent cycling stability of the as-prepared Mn3O4@C networks makes it a promising candidate as the potential anode material for LIBs.

Nanoscale Res Lett ; 11(1): 126, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26951126


In this report, a novel photocatalyst based on Bi2WO6/Ag2S heterostructures was prepared by a 3-mercaptopropionic acid (MPA)-assisted route at room temperature. Compared to bare Bi2WO6 and Ag2S nanoparticles, the as-formed Bi2WO6/Ag2S heterostructures exhibit enhanced photocatalytic activity for the degradation of rhodamine B (Rh B) under visible-light irradiation. This kind of enhancement in the photocatalytic activity is considered to be the synergistic effects of both the effective electron-hole separation and expansion of the light-absorption range. The pH of the solution is of vital importance to the photocatalytic activity of the as-formed Bi2WO6/Ag2S heterostructures. Under low pH value, the photosensitization process is suppressed, while under higher pH value, the photosensitization process is favored. The mechanism of the photocatalytic process was proposed by the active-species-trapping experiments, indicating that the photogenerated holes (h(+)) play a crucial role in the degradation of Rh B under visible light. The enhanced photocatalytic performance of this heterostructure makes it a promising material for the treatment of dye-containing wastewater.

J Colloid Interface Sci ; 466: 388-99, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26752434


Highly-efficient photocatalyst based on Bi2WO6/SnS heterostructure was prepared via a surface functionalization method using 3-mercaptopropionic (MPA) as the surface functionalizing agent. Compared to bare Bi2WO6 and SnS nanoparticles, the as-formed Bi2WO6/SnS heterostructure exhibits enhanced photocatalytic activity for the degradation of Rhodamine B (Rh B). Photoluminescence and photocurrent measurements demonstrate that the enhanced photocatalytic activity during the photocatalytic process is closely related to the enhanced electron-hole separation efficiency. The photocatalytic activity of the as-formed Bi2WO6/SnS heterostructure can be perfectly remained even after being used for five times, showing excellent durability during the photocatalytic process. The influence of pH and inorganic ions are systematically investigated. And the optimum pH for the photocatalytic process is determined to be 6. The addition of chloride ion will exert negative effect on the photodegradation process of Rh B. The mechanism of photodegradation process was investigated by exploring the quenching effects of different scavengers and the results suggest that the reactive holes play the major role in the photodegradation process of Rh B.