Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 110: 103734, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32418892

RESUMO

Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are a pivotal intracellular pattern recognition receptor family. However, studies on NLR genes in important economic fish grass carp (Ctenopharyngodon idella) are sporadic. The accumulations of genomic resource and transcriptomic sequences make it feasible to conduct a systematic analysis of these genes. In this study, we systematically conducted the genome-wide study of C. idella NLR genes and characterized their phylogeny, gene structure, conserved domain, evolutionary mechanism, and expression profiles post viral or bacterial challenge. A total of 65 NLR genes were identified and clustered into five subfamilies based on structural and phylogenetic features, including eight NODs (NLR-A), five NLRP-like receptors (NLR-B), forty-seven teleost-specific NLRs (NLR-C), two members with a B30.2 domain at the C-terminal (NLR-B30.2), and three additional NLRs (other NLRs). Gene structure analysis showed that NLRs were significantly different, with exon numbers from 3 to 31. Conserved domain analysis showed that most members of C. idella NLRs had additional domains besides the typical NLR domains. Gene duplication analysis indicated that the evolution of the NLR gene family was mainly related to segment duplication. mRNA expression analysis indicated that many members were differently expressed in multiple tissues post grass carp reovirus (GCRV) or Aeromonas hydrophila infection. The expression was particularly enhanced in liver post GCRV infection, and obviously lower post A. hydrophila infection than that post GCRV infection in spleen. These results provide systematic basic data for further functional studies of NLR, and insight into the immune responses of piscine fish NLRs to pathogen infections.

2.
Biomolecules ; 10(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268551

RESUMO

Diseases caused by viruses threaten the production industry and food safety of aquaculture which is a great animal protein source. Grass carp reovirus (GCRV) has caused tremendous loss, and the molecular function of viral proteins during infection needs further research, as for most aquatic viruses. In this study, interaction between GCRV major outer capsid protein VP4 and RIG-I, a critical viral RNA sensor, was screened out by GST pull-down, endogenous immunoprecipitation and subsequent LC-MS/MS, and then verified by co-IP and an advanced far-red fluorescence complementation system. VP4 was proved to bind to the CARD and RD domains of RIG-I and promoted K48-linked ubiquitination of RIG-I to degrade RIG-I. VP4 reduced mRNA and promoter activities of key genes of RLR pathway and sequential IFN production. As a consequence, antiviral effectors were suppressed and GCRV replication increased, resulting in intensified cytopathic effect. Furthermore, results of transcriptome sequencing of VP4 stably expressed CIK (C. idella kidney) cells indicated that VP4 activated the MyD88-dependent TLR pathway. Knockdown of VP4 obtained opposite effects. These results collectively revealed that VP4 interacts with RIG-I to restrain interferon response and assist GCRV invasion. This study lays the foundation for anti-dsRNA virus molecular function research in teleost and provides a novel insight into the strategy of immune evasion for aquatic virus.

3.
Fish Shellfish Immunol ; 99: 27-34, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32001352

RESUMO

Hepcidin links iron metabolism with innate immunity during the inhibition of bacterial infection. Our previous studies had shown that recombinant hepcidin can significantly reduce the mortality rate of Ctenopharyngodon idella infected with Flavobacterium columnare under laboratory conditions. Here, we studied the preventive and therapeutic effects of feed supplemented with different doses of recombinant hepcidin on F. columnare-challenged C. idella reared in a cage culture environment. The results showed that in the prevention groups, 30 and 90 mg/kg of added purified and unpurified hepcidin respectively resulted in a higher survival rate in the early post-infection period, while 60 mg/kg of purified hepcidin significantly improved the survival rate in the therapy group (all compared to the control group). In the hepatopancreas, the expression of hepcidin and ferritin was significantly up-regulated, and the levels of ferroportin and serum iron were significantly decreased, especially in the therapy group. In addition, the expression of iron-related genes in spleen and intestine exhibited a similar trend to that in hepatopancreas. Meanwhile, immune genes were up-regulated to varying degrees, and the therapy group exhibited a significantly improved expression of pro-inflammatory cytokines and specific immunity. In summary, our study shows that different doses of recombinant hepcidin had protective effects against bacterial infection by regulating the iron distribution and immune gene expression, which provides a strong foundation for the application of recombinant hepcidin in aquaculture.

4.
Fish Shellfish Immunol ; 98: 285-295, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962149

RESUMO

As one of the most important fish in freshwater aquaculture, gibel carp (Carassius auratus gibelio) is easily susceptible to Cyprinid herpesvirus 2 (CyHV-2). Immersion vaccination has attracted many researchers due to its simple operation in preventing infectious diseases. However, the unavoidable disadvantage is that the immersion vaccine must be used with adjuvants to get a better performance. In this study, gibel carps were vaccinated by a 60 min bath in a ß-propiolactone-inactivated Cyprinid herpesvirus 2, mixed with DTT, ß-glucan, anisodamine and scopolamine, respectively. After immunization, the fishs were challenged by CyHV-2 in 2 weeks. By analyzing pathological section, we found that ß-glucan, anisodamine and scopolamine groups protected the gibel carp compared to the control group, which was consistent with the trend of survival rate. Specifically, ß-glucan group in serum appeared best on lysozyme, TSOD and complement C3. Real time quantitative RT-PCR results demonstrated that in both spleen and head kidney tissues, mRNA expressions of typical Th1 immune response cytokines IL-2 and IFN-γ2 in ß-glucan group and anisodamine group were significantly higher than other groups and the level of immunoglobulins related to systemic immunity (IgM) and mucosal immunity (IgZ) were also enhanced in the immune period. DTT group slightly affected immune gene and serum enzyme activity, while did not show an adjuvant effect on survival rate. In addition, four adjuvant groups could obviously inhibit CyHV-2 replication. This study explored and proved the good efficiency of ß-glucan or anisodamine as immersion immune adjuvant and also provided reference for improving the efficiency of immersion immunity.

5.
Fish Shellfish Immunol ; 97: 531-539, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794844

RESUMO

Yellow catfish (Pelteobagrus fulvidraco) has been an economically important freshwater species in China because of its good meat quality. In present, the high-density breeding industry has suffered great damage from bacterial infections, in especial, the rapid illness and death of fish caused by bacterial septicemia leads to huge economic losses. Therefore, it is urgent and important to identify pathogenic bacteria and study its pathogenicity. In this study, we isolated a bacterial strain from the yellow catfish with typical septicemia and named it E. 719, then, by morphological observations, regression infection, biochemical identification, 16S rDNA sequence analysis and triple PCR identification, E. 719 was determined to be Edwardsiella ictaluri. Further, we infected yellow catfish with E. ictaluri to study its effects on mortality rate, hematological, histopathological disturbances and expression of immune genes. The mortality results showed that E. ictaluri was highly pathogenic, all infected fish died after 14 days post injection, and the distribution of bacteria in body kidney, spleen, liver, head kidney and brain of fish was continuously detected by measuring the amount of bacteria in the tissues. In addition, the number of red blood cells decreased significantly with the time of infection, while the number of white blood cells and thrombocytes increased. In particular, the number of monocytes and neutrophils increased significantly in the differential leucocyte count (DLC). Histopathologic changes observed by HE staining showed similar results, gill, intestine, spleen and head kidney showed obvious inflammation, bleeding and necrosis. Besides, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of immune gene IL-1ß, TNF-α, and MR significantly increased in the early and middle stages of infection, which suggested that the infection of E. ictaluri caused a strong immune response in yellow catfish. This study provides a preliminary basis for the diagnosis and treatment of pathophysiology septicemia in yellow catfish induced by E. ictaluri.

6.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766619

RESUMO

Iron is an essential element, closely linked with host immune responses. Nevertheless, the relationship between iron metabolism and virus infection is still unclear in aquatic vertebrates. To address this issue, we employed grass carp (Ctenopharyngodon idella) and its lethal virus, grass carp reovirus (GCRV), a double-strand RNA virus, as models. Our results demonstrate that GCRV infection increases the iron content and alters the expression of iron metabolism-related genes both in vivo and in vitro. Of note, the expression of C. idella transferrin receptor 1 (CiTfR1) rather than transferrin is upregulated upon GCRV infection. To clarify the implications of CiTfR1 upregulation for antiviral immunity, we proved that CiTfR1 was not a helper for GCRV invasion, but instead, it inhibited GCRV infection and promoted cell proliferation by facilitating the accumulation of intracellular labile iron pool (LIP), which increases intracellular oxidative stress. Interestingly, we found that CiTfR1 overexpression inhibited the mRNA expression of C. idella interferon 1 (CiIFN1) and CiIFN3. The present study reveals a novel antiviral defense mechanism in teleost where TfR1 induces the accumulation of LIP, leading to the suppression of virus infection and the proliferation of host cells, indicating that iron can be used as a medicated feed additive for the control of animal viral disease.

7.
8.
Fish Shellfish Immunol ; 95: 305-313, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31654768

RESUMO

IFN-γ is an immunomodulatory factor that has been extensively studied in phenotypes of mammalian macrophages and multifarious inflammatory responses. Usually these studies relied on the classical synergistic activation of IFN-γ with LPS (LipoPolySaccharides). However, non-mammalian vertebrates, and in particular fish, are not very susceptible to LPS, and easily acquire tolerance upon repeated exposure. Therefore, for studies in fish, it is necessary to replace the classical IFN-γ+LPS immune system activation method, and find other pathogen-associated molecular patterns (PAMPs) capable of stimulating the fish immune system. Here we used an important farmed fish species, Ctenopharyngodon idella, to study the effects of CiIFN-γ2 (C. idella IFN-γ2) and chitosan (CS) on its immune responses in vivo and vitro. Our results showed that the combination of CS and CiIFN-γ2 significantly enhanced the activation of macrophages, with an activation intensity even stronger than in CiIFN-γ2 and CiIFN-γ2+LPS groups. In vivo, injection of CiIFN-γ2 could improve the survival rate of C. idella infected with Flavobacterium columnare, while a combined injection of CiIFN-γ2+CS only improved protection in the early stages after the challenge. Notably, both injections reduced the bacterial load of viscera and improved the levels of several plasma parameters (TP, T-SOD, LA, and NO). However, a dramatic up-regulation of inflammatory factors, severe inflammatory damage in the intestines and hepatopancreas, and increased mortality in late stages of infection were observed in the CiIFN-γ2+CS group. Our findings provide new insights into the macrophage activation phenotypes and inflammatory responses in fish. They also demonstrate that CiIFN-γ2 could be used as a potential immunopotentiator, but not in combination with CS. This suggests that selection of immunological adjuvants should be carefully tested experimentally.

9.
J Immunol ; 203(11): 3054-3067, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31645417

RESUMO

The pharyngeal organ is located at the crossroad of the respiratory and digestive tracts in vertebrate, and it is continuously challenged by varying Ags during breathing and feeding. In mammals, the pharyngeal mucosa (PM) is a critical first line of defense. However, the evolutionary origins and ancient roles of immune defense and microbiota homeostasis of PM are still unknown. In this study, to our knowledge, we are the first to find that diffuse MALT is present in PM of rainbow trout, an early vertebrate. Importantly, following parasitic infection, we detect that strong parasite-specific mucosal IgT and dominant proliferation of IgT+ B cell immune responses occurs in trout PM, providing, to our knowledge, the first demonstration of local mucosal Ig responses against pathogens in pharyngeal organ of a nonmammal species. Moreover, we show that the trout PM microbiota is prevalently coated with secretory IgT and, to a much lesser degree, by IgM and IgD, suggesting the key role of mucosal Igs in the immune exclusion of teleost pharyngeal bacteria. Overall, to our knowledge, our findings provide the first evidence that pharyngeal mucosal immunity appear earlier than tetrapods.

10.
Fish Shellfish Immunol ; 93: 492-499, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31381973

RESUMO

TANK-binding kinase 1 (TBK1) is an important kinase that regulates the activation of interferon regulatory factor 3/7 (IRF3/7) to induce type I interferon (IFN-I) production in antiviral immune responses. However, in long-term virus-host crosstalk, viruses have evolved elaborate strategies to evade host immune defense mechanisms. In the present study, we found that grass carp (Ctenopharyngodon idella) reovirus (GCRV) hijacks TBK1 to escape IRF7-IFN-Is signaling activation. In brief, GCRV inhibited TBK1 activation by restaining K63-linked ubiquitination of TBK1 and promoting its K48-linked ubiquitination. This regulation resulted in that under low titer of GCRV infection, TBK1 overexpression specifically supressed promoter activity and phosphorylation of IRF7 and induction of downstream IFN1and IFN3. qRT-PCR data uncovered that TBK1 negatively regulated IRF7, IFN1 and IFN3 transcription levels under low viral titer infection. Along with enhancement of GCRV titers, TBK1 swiched its function to up-regulate IRF7, IFN1 and IFN3 mRNA levels. Accordingly, TBK1 promoted GCRV replication at low infected titer, but inhibited GCRV replication at high infected titer. All these results revealed a viral evasion strategy that GCRV utilizes TBK1 to block cellular IFN responses at low titers or early stages in fish species, which will lay a foundation for further researching on host-virus interactions and developing novel antiviral strategies in lower vertebrates.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/imunologia , Animais , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária
11.
Fish Shellfish Immunol ; 92: 172-180, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176008

RESUMO

Cyclophilin A (CypA) is a ubiquitously expressed cellular protein and involves in diverse pathological conditions, including infection and inflammation. CypA acts as a key factor in the replication of several viruses. However, little is known about the role of CypA in the replication of the red-spotted grouper nervous necrosis virus (RGNNV). In the present report, grouper CypA (GF-CypA) was cloned from the grouper fin cell line (GF-1) derived from orange-spotted grouper (Epinephelus coioides). Sequence analysis found that GF-CypA open reading frame (ORF) of 495 bp encodes a polypeptide of 164 amino acids residues with a molecular weight of 17.4 kDa. The deduced amino acid sequence shared highly conserved regions with CypA of other animal species, showing that GF-CypA is a new member of Cyclophilin A family. We observed that GF-CypA was up-regulated in the GF-1 cells infected with RGNNV. Additionally, overexpression of CypA could significantly inhibit the replication of RGNNV in GF-1 cells. By contrast, when the GF-CypA was knock-downed by siRNA in GF-1 cells, the replication of RGNNV was enhanced. Furthermore, the expressions of pro-inflammatory factors, such as TNF-2, TNF-α, IL-1b, and ISG-15, were increased in GF-CypA transfected GF-1 cells challenged with RGNNV, indicating that GF-CypA might be involved in the regulation of the host pro-inflammatory factors. Altogether, we conclude that GF-CypA plays a vital role in the inhibitory effect of RGNNV replication that might be modulating the cytokines secretion in GF-1 cells during RGNNV infection. These results will shed new light on the function of CypA in the replication of RGNNV and will pave a new way for the prevention of the infection of RGNNV in fish.


Assuntos
Bass/genética , Bass/imunologia , Ciclofilina A/genética , Ciclofilina A/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclofilina A/química , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Nodaviridae/fisiologia , Filogenia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Alinhamento de Sequência/veterinária , Replicação Viral
12.
Front Immunol ; 10: 869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156612

RESUMO

Prophylactic administration of immunopotentiators has been tested and practiced as one of the most promising disease prevention methods in aquaculture. Chitosan oligosaccharide (COS), as an ideal immunopotentiator, is mainly used as feed additives in aquaculture, and the antimicrobial and immune enhancement effects are highly correlated with molecular weight (MW), but little is known about the mechanisms in teleost. Here, we isolated and purified macrophages in head kidney from blunt snout bream (Megalobrama amblycephala), stimulated them with three different MW (~500 Da, ~1000 Da and 2000~3000 Da) COSs, performed RNA-sequencing, global transcriptional analyses, and verification by quantitative real-time PCR (qRT-PCR) and immunofluorescent staining methods. Differential expression gene (DEG) analysis indicated that gene expression patterns are different and the proportion of unique genes are relatively high in different treatment groups. Biological process and gene set enrichment analysis (GSEA) demonstrated that all three COSs activate resting macrophages, but the degrees are different. Weighted gene co-expression network analysis (WGCNA) reflected gene modules correlated to MW, the module hub genes and top GO terms showed the activation of macrophage was positively correlated with the MW, and larger MW COS activated cell death associated GO terms. Further use of the screening and enrichment functions of STRING and Pfam databases discovered that apoptosis-related pathways and protein families were activated, such as the P53 pathway and caspase protein family. qRT-PCR results showed that as the stimulation time extends, the innate immune-related and P53 pathways are gradually activated, and the degree of activation is positively correlated with the stimulation time. In addition, apoptosis was detected by immunofluorescent staining in three groups. Therefore, the use of COS has two sides-it can activate the immune system against pathogen invasion, but with the increase in stimulation time and MW, macrophage apoptosis is induced, which may be caused by abnormal replication of DNA and excessive inflammation. This study provides a theoretical basis for the rational use of COS as an immunopotentiator in aquaculture.

13.
Fish Shellfish Immunol ; 90: 376-384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048039

RESUMO

The grass carp (Ctenopharyngodon idella), blunt snout bream (Megalobrama amblycephala) and yellow catfish (Pelteobagrus fulvidraco) are economically important fishes in China. Fish hematological features, especially the type and number of peripheral blood cells, are crucial for the evaluation of fish health and the diagnosis of fish diseases. Since the automatic blood cell count equipment for human is not suitable for fishes, the manual method is critical in the quantification of fish blood cells. To make sense of the comparison and interpretation of the blood cell count studies in different articles, the standardization of blood cell classification is necessary. In this study, erythrocytes (red blood cell, RBC), thrombocytes (TC) and leucocytes (i.e. white blood cells, WBC, including lymphocytes, neutrophils and monocytes) were well distinguished in blood smears with Giemsa staining and confirmed by transmission electron microscopy. RBC, TC and WBC were directly counted with an improved Neubauer counting chamber in a modified diluting solution. The differential leucocyte count (DLC) was carried out in blood smears. In view of the labeling characteristics of peroxidase (PO) positivity in neutrophils and non-specific esterase (α-ANAE) positivity in monocytes, PO positive cell percentage and α-ANAE positive cell percentage were also determined in cytochemistry staining smears. No difference was found for the percentages of neutrophils and monocytes between Giemsa staining and cytochemistry staining. The standardized classification, normal count ranges and sizes of the peripheral blood cells by the present systemic studies will provide useful references for monitoring the health status of grass carp, blunt snout bream and yellow catfish.


Assuntos
Contagem de Células Sanguíneas/veterinária , Carpas/sangue , Peixes-Gato/sangue , Cyprinidae/sangue , Animais , Corantes Azur , Plaquetas/citologia , China , Eritrócitos/citologia , Leucócitos/citologia , Microscopia Eletrônica de Transmissão/veterinária , Valores de Referência
14.
Fish Shellfish Immunol ; 89: 52-60, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30904683

RESUMO

Siniperca chuatsi is an economically important fish in China, but infectious spleen and kidney necrosis virus (ISKNV) causes high mortality and significant economic losses. Currently, vaccination is the most promising strategy to prevent infectious diseases, while adjuvant can effectively enhance immune responses. In this study, inactivated ISKNV vaccine was prepared, then poly (I:C), chitosan, anisodamine and ims1312 were used as adjuvants to evaluate the effect on the immune responses and ISKNV replication. Chitosan could strongly boost the protection of liver and spleen tissues by pathological sections. In serum, poly (I:C) and chitosan group had protective effect on catalase, acid phosphatase, blood urea nitrogen. mRNA expressions showed these adjuvants induced the cytokines of early immune responses (TNF-α, Viperin) in both spleen and mesonephron by real time quantitative RT-PCR assays. Meanwhile, poly (I:C), chitosan and anisodamine were significantly improved the antiviral function and inhibited ISKNV replication. Chitosan and anisodamine played a significantly protective role in the immune protective rate test. The results indicated that all the four adjuvants are valid in the inactivated ISKNV vaccine, and chitosan is recommended preferentially. The present study provides reference for other animal vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Quitosana/imunologia , Iridoviridae/imunologia , Perciformes/imunologia , Alcaloides de Solanáceas/imunologia , Vacinas Virais/imunologia , Animais , Infecções por Vírus de DNA/imunologia , Enzimas/sangue , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária , Imunidade Inata/efeitos dos fármacos , Perciformes/genética , Poli I-C/imunologia , Replicação Viral/efeitos dos fármacos
15.
Fish Shellfish Immunol ; 87: 379-385, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30690155

RESUMO

The yellow catfish (Pelteobagrus fulvidraco) is an economically important fish in China, but Edwardsiella ictaluri, an intracellular pathogenic bacterium, causes great losses to the culture industry. Currently, vaccination is the most promising strategy to combat the infectious diseases, while adjuvant can provide effective assistant for vaccines to enhance immune responses. In the present study, inactivated E. ictaluri vaccine was prepared, then Astragalus polysaccharides (APS), chitosan and poly(I:C) were employed as adjuvants to evaluate the effect on boosting immune responses and protecting yellow catfish against E. ictaluri. The survival rate was obviously improved after vaccination with APS, chitosan or poly(I:C) respectively, in addition, these three adjuvants could clearly protect the target tissue (intestine) by pathological sections in infectious experiments. In sera, total protein levels increased throughout the immunization stages, total superoxide dismutase levels continued to raise after vaccination, and lysozyme activity levels improved at different periods, examining by the commercial kits. Moreover, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of inflammatory cytokine IL-1ß increased in the early stage of immunity, typical Th1 immune response cytokines IL-2 and IFN-γ2 rose up in the whole immune period, and IgM significantly enhanced in the adjuvant supplementation groups. The results demonstrated the good efficiency of APS, chitosan or poly(I:C) as adjuvant, and provided more options for the fish adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/imunologia , Peixes-Gato , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Poli I-C/farmacologia , Polissacarídeos/farmacologia , Animais , Astrágalo (Planta)/química , Quitosana/administração & dosagem , Quitosana/farmacologia , Edwardsiella ictaluri/efeitos dos fármacos , Infecções por Enterobacteriaceae/prevenção & controle , Poli I-C/administração & dosagem , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Potência de Vacina , Vacinas de Produtos Inativados/imunologia
16.
Fish Shellfish Immunol ; 86: 107-115, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30447430

RESUMO

Complement system is an immemorial and pivotal element in innate immunity, protecting individuals from invading pathogens. Due to the emergence of whole genomes and functional researches, systematic identifications of complement system are feasible in many non-model species. In the present study, BLAST analysis was employed to systematically identify and characterize complement system in grass carp (Ctenopharyngodon idella). The results showed that C. idella complement system consists of 64 members, including the complement system pattern recognition, proteases, complement components, receptors and regulators. In which, most genes were well conserved with those in higher vertebrates over the course of evolution. Phylogenetic and syntenic analyses revealed their homologous relationships with other species. mRNA expression analyses of complement system related genes indicated that many members are sustainably expressed in multiple tissues before and after grass carp reovirus (GCRV) or Aeromonas hydrophila infection, which provide in vivo evidence for the response patterns of complement system after viral or bacterial infection. Meanwhile, this study also explored the evolution of complement system from ancestral protists to mammals and then investigated the changes in gene diversification during the evolution. These results will serve the comparative studies on the complement system in evolution and further functional investigations in C. idella.


Assuntos
Carpas , Proteínas do Sistema Complemento/metabolismo , Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Reoviridae/veterinária , Aeromonas hydrophila , Animais , Proteínas do Sistema Complemento/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reoviridae , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Transcriptoma
17.
Fish Shellfish Immunol ; 86: 805-813, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30540955

RESUMO

Viperin is known to play an important role in innate immune and its antiviral mechanisms are well demonstrated in mammals. Fish Viperin mediates antiviral activity against several viruses. However, little has been done to the underlying mechanism. Here, we discovered a novel Viperin splice variant named Viperin_sv1 from viral-infected FHM cells. Spring varimia of carp virus (SVCV) was able to increase the mRNA levels of both Viperin and Viperin_sv1, while poly(I:C) only has effect on Viperin. Viperin functions as an antiviral protein at 24 h post-SVCV infection, but the antiviral activity dramatically declined at late infection stages. However, Viperin_sv1 inhibited SVCV replication significantly at all the tested time. Viperin_sv1, but not Viperin can facilitate the production of type I IFN and IFN stimulate genes (ISGs) through activation of RIG-1, IRF3 and IRF7 signaling cascades. On the other hand, SVCV down-regulated Viperin_sv1 at the protein level through the proteasome pathway to keep itself away from the immune system monitoring. Taken together, these findings provide new insights into the regulation of Viperin from the posttranscriptional modification perspective and the role of splicing variant Viperin_sv1 in virus-host interaction.


Assuntos
Antivirais/farmacologia , Cyprinidae/virologia , Proteínas de Peixes/genética , Rhabdoviridae/fisiologia , Animais , Proteínas de Peixes/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacologia
18.
Virology ; 526: 32-37, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30336336

RESUMO

Snakehead vesiculovirus (SHVV) is a new rhabdovirus isolated from diseased hybrid snakehead fish (Channa maculate ♀ x Channa argus ♂) and has caused serious economic losses in snakehead fish culture in China. To better understand the pathogenicity of SHVV, we developed a reverse genetics system for SHVV by using human and fish cells. In detail, human 293T cells were co-transfected with four plasmids encoding the full-length SHVV antigenomic RNA or the supporting proteins including nucleoprotein (N), phosphoprotein (P), and large polymerase (L), followed by the cultivation in Channel catfish ovary (CCO) cells. We also rescued a recombinant SHVV expressing enhanced green fluorescent protein (EGFP), which was inserted into the 3' non-coding region (NCR) of the glycoprotein (G) gene of SHVV. Our study provides a potential tool for unveiling the pathogenicity of SHVV and a template for the rescue of other fish viruses by using both human 293T and fish cells.


Assuntos
Doenças dos Peixes/virologia , Genética Reversa , Infecções por Rhabdoviridae/virologia , Vesiculovirus/genética , Animais , Células Cultivadas , DNA Complementar/genética , Feminino , Peixes , Genes Virais/genética , Genoma Viral/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Ovário/citologia , RNA Viral/biossíntese , RNA Viral/genética , Vesiculovirus/crescimento & desenvolvimento
19.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888180

RESUMO

Hemorrhage is one of the most obvious pathological phenomena in grass carp reovirus (GCRV) infection. The etiology of GCRV-induced hemorrhage is unclear. We found inducible nitric oxide synthase (iNOS) may relate to viral hemorrhage according to the previous studies, which is expressed at high levels after GCRV infection and is related to apoptosis. In this study, we aimed to investigate the mechanism of iNOS on apoptosis and hemorrhage at the cell level and individual level on subjects who were infected with GCRV and treated with S-methylisothiourea sulfate (SMT), an iNOS inhibitor. Cell structure, apoptosis rate, and hemorrhage were evaluated through fluorescence microscopy, Annexin V-FITC staining, and H&E staining, respectively. Cell samples and muscle tissues were collected for Western blotting, NO concentration measure, caspase activity assay, and qRT-PCR. iNOS-induced cell apoptosis and H&E staining showed that the vascular wall was broken after GCRV infection in vivo. When the function of iNOS was inhibited, NO content, apoptosis rate, caspase activity, and hemorrhage were reduced. Collectively, these results suggested iNOS plays a key role in apoptosis of vascular endothelial cells in GCRV-induced hemorrhage. This study is the first to elucidate the relationship between iNOS-induced cell apoptosis and GCRV-induced hemorrhage, which lays the foundation for further mechanistic research of virus-induced hemorrhage.


Assuntos
Apoptose , Carpas/virologia , Células Endoteliais/patologia , Doenças dos Peixes/virologia , Hemorragia/virologia , Óxido Nítrico Sintase Tipo II/metabolismo , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Animais , Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Inibidores Enzimáticos/farmacologia , Doenças dos Peixes/enzimologia , Hemorragia/enzimologia , Hemorragia/genética , Isotiurônio/análogos & derivados , Isotiurônio/farmacologia , Modelos Biológicos , Infecções por Reoviridae/enzimologia , Infecções por Reoviridae/virologia
20.
Front Immunol ; 10: 3003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010127

RESUMO

TLR22 exists in nearly all the poikilothermic vertebrates and plays a central role in the initiation of innate immunity and activation of adaptive immunity. TLR22 signaling pathway has been characterized in detail in fugu (Takifugu rubripes). Here, we thoroughly remold the localization and signaling pathways of TLR22. We characterized TLR22a and TLR22b in grass carp (Ctenopharyngodon idella), designated as CiTLR22a and CiTLR22b, and explored the ligand(s), adaptor(s), and signaling pathway(s). Results show that both CiTLR22a and CiTLR22b localize to lysosome, acidic compartment. Correspondingly, CiTLR22a and CiTLR22b directly bind and respond to dsRNA analog poly(I:C) at pH 5, but not at pH 7.4, the physiological pH. Moreover, CiTLR22a and CiTLR22b exhibit antagonistic function in signal transmission, wherein CiTLR22a facilitates the protein and phosphorylation levels of IRF7 and enhances the promoter activities of major IFNs and NF-κBs, while CiTLR22b downregulates IRF7 phosphorylation and IRF3 protein level and suppresses the IFN and NF-κB pathways. Further investigations revealed that CiTLR22a restrains grass carp reovirus (GCRV) replication and protects cells from GCRV infection, whereas CiTLR22b plays a negative role in response to GCRV infection. This is the first time to systematically clarify the signaling pathways of two isotype TLR22s; especially, subcellular localization and adaptor are different from previous TLR22 report, which results from technical limitations. The results will serve the antiviral immune mechanisms in poikilothermic vertebrates and evolutionary immunology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA