Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083633

RESUMO

A simple and flexible strategy based on droplet microfluidics is developed for controllable fabrication of uniform magnetic SiO2 microparticles with highly-interconnected hierarchical porous structures for enhanced water decontamination. Uniform precursor water droplets containing surfactants and homogenized fine oil droplets with a relatively high volume ratio are generated from microfluidics as templates for microparticle synthesis via hydrolysis/condensation reaction. The SiO2 microparticles possess hierarchical porous structures, containing both mesopores with size of several nanometers, and well-controlled and highly-interconnected macropores with size of hundreds of nanometers. The SiO2 microparticles synergistically integrate fast mass transfer and large functional surface area for enhanced adsorption. To demonstrate the enhanced adsorption performances for organic dyes and toxic heavy metal ions, the microparticles are respectively used for removal of methylene blue in water, and modified with thiol-groups for removal of Pb2+ ions in water. Meanwhile, the microparticles can be easily recycled by magnetic field for reuse.

2.
Protein Cell ; 11(1): 1-22, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31037510

RESUMO

Cockayne syndrome (CS) is a rare autosomal recessive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sunlight, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limitations of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapitulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compliant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a foundation for the development of novel therapeutic strategies to treat CS.

3.
Environ Pollut ; : 113676, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31818614

RESUMO

CH4 oxidation in landfill cover soils plays a significant role in mitigating CH4 release to the atmosphere. Oxygen availability and the presence of co-contaminants are potentially important factors affecting CH4 oxidation rate and the fate of CH4-derived carbon. In this study, microbial populations that oxidize CH4 and the subsequent conversion of CH4-derived carbon into CO2, soil organic C and biomass C were investigated in landfill cover soils at two O2 tensions, i.e., O2 concentrations of 21% ("sufficient") and 2.5% ("limited") with and without toluene. CH4-derived carbon was primarily converted into CO2 and soil organic C in the landfill cover soils, accounting for more than 80% of CH4 oxidized. Under the O2-sufficient condition, 52.9%-59.6% of CH4-derived carbon was converted into CO2 (CECO2-C), and 29.1%-39.3% was converted into soil organic C (CEorganic-C). A higher CEorganic-C and lower CECO2-C occurred in the O2-limited environment, relative to the O2-sufficient condition. With the addition of toluene, the carbon conversion efficiency of CH4 into biomass C and organic C increased slightly, especially in the O2-limited environment. A more complex microbial network was involved in CH4 assimilation in the O2-limited environment than under the O2-sufficient condition. DNA-based stable isotope probing of the community with 13CH4 revealed that Methylocaldum and Methylosarcina had a higher relative growth rate than other type I methanotrophs in the landfill cover soils, especially at the low O2 concentration, while Methylosinus was more abundant in the treatment with both the high O2 concentration and toluene. These results indicated that O2-limited environments could prompt more CH4-derived carbon to be deposited into soils in the form of biomass C and organic C, thereby enhancing the contribution of CH4-derived carbon to soil community biomass and functionality of landfill cover soils (i.e. reduction of CO2 emission).

4.
Artigo em Inglês | MEDLINE | ID: mdl-31707907

RESUMO

Among three monofluoroanilines, 2-fluoroaniline (2-FA) and 3-fluoroaniline (3-FA) exhibit relatively poor biodegradability. This work examined their degradation characteristics in a mixed culture system and also analyzed the microorganism community. After acclimation for 58 d and 43 d, the high removal efficiency of 100% of 2-FA and 95.3% of 3-FA was obtained by adding 25 mg L-1 of 2-FA or 3-FA to the two reactors, respectively. In addition, the high defluorination rates of 2-FA and 3-FA were observed to be 87.0% and 89.3%, respectively. The degradation kinetics showed that the maximum specific degradation rates of 2-FA and 3-FA were (21.23 ± 0.91) mg FA (g•VSS·h)-1, and (11.75 ± 0.99) mg FA (g•VSS·h)-1, respectively. PCR-DGGE analysis revealed that the unique bacteria degrading 2-FA were mainly composed of six genera (Novosphingobium, Bradyrhizobium, Aquaspirillum, Aminobacter, Ochrobactrum, and Labrys), and five genera that degraded 3-FA (Ochrobactrum, Aquaspirillum, Lachnobacterium, Bradyrhizobium, and Variovorax). Analysis of the key catabolic enzyme activities indicated that the simultaneous hydroxylation and dehalogenation were involved in monooxygenase elimination of 2-FA and conversion of 3-FA to 4-fluorocatechol by dioxygenase, indicating that enriched mixed cultures were effective to metabolize 2-FA or 3-FA by unconventional pathways to prevent the accumulation of toxic metabolites.

5.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118541, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473257

RESUMO

Jumonji C (JmjC) domain-containing proteins have been shown to regulate cellular processes by hydroxylating or demethylating histone and non-histone targets. JMJD8 is a Jumonji C domain-containing protein localized in the lumen of the endoplasmic reticulum and was recently shown to be involved in endothelial differentiation and cellular inflammation response. However, other physiological functions of JMJD8 remain to be elucidated. In this research, we found that knockdown of JMJD8 in cancer cells significantly increased cell proliferation, and attenuated ionizing irradiation or etoposide treatment-induced DNA double-strand breaks (DSBs) level through enhancing the expression of Ku70 and Ku80 which are key participants in the non-homologous end-joining repair of DSBs. We also provided evidence to show that knockdown of JMJD8 up-regulated cyclooxygenase-2 (COX-2) expression which contributed to the enhanced expression of Ku70/Ku80 as shown by the results that pre-treatment of JMJD8 knockdown cells with COX-2 selective inhibitor NS-398 inhibited the induction of Ku70/Ku80. Furthermore, we identified that the up-regulation of COX-2 in JMJD8 knockdown cells was partially due to the increased activation of AKT/NF-κB signaling, and LY294002 (an inhibitor of the PI3K/AKT signaling pathway) repressed the induction of COX-2 and Ku70/Ku80. In conclusion, our research provided data to establish the role of JMJD8 in regulating tumor cell proliferation and their sensitivity to ionizing irradiation or chemo-therapy drug, and the AKT/NF-κB/COX-2 signaling mediated expression of Ku70/Ku80 was involved. The results of this research indicated that JMJD8 is a potential target for enhancing the efficacy of tumor radio- and chemo-therapies.

6.
Bull Environ Contam Toxicol ; 102(5): 635-642, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053868

RESUMO

The biogeochemistry of mercury (Hg) in rice-paddy soil systems raises concerns, given that (1) the redox potential in paddy soil favors Hg methylation and (2) rice plants have a strong ability to accumulate methylmercury (MeHg), making rice an important source for MeHg exposure to humans. Therefore, all factors affecting the behavior of Hg in rice-paddy soils might impact Hg accumulation in rice, with its subsequent potential risks. As a typical wetland, paddy soils are managed by humans and affected by anthropogenic activities, such as agronomic measures, which would impact soil properties and thus Hg biogeochemistry. In this paper, we reviewed recent advances in the effects of farming activities including water management, fertilizer application and rotation on Hg biogeochemistry, trying to elucidate the factors controlling Hg behavior and thus the ecological risks in rice-paddy soil systems. This review might provide new thoughts on Hg remediation and suggest avenues for further studies.


Assuntos
Produtos Agrícolas/química , Fertilizantes , Mercúrio/química , Oryza/química , Poluentes do Solo/análise , Solo/química , Irrigação Agrícola , Recuperação e Remediação Ambiental , Fazendas , Humanos , Metilação , Compostos de Metilmercúrio/química
7.
Huan Jing Ke Xue ; 40(3): 1270-1279, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087974

RESUMO

The index of biotic integrity (IBI) has been widely used in river ecosystem health assessment. However, few studies have reported the application of microbial communities in ecosystem health assessment so far, especially for urban rivers. In this study, the Illumina high-throughput sequencing technique was applied to analyze the microbial community diversity and composition of five urban rivers selected in Zhejiang Province. Canonical correlation analyses (CCA) and Spearman correlation analysis were used to evaluate the relationship between each taxonomic group and the water quality properties to select the most sensitive taxonomic groups as candidate indexes. The functional metrics, including the relative abundance of pathogenic bacteria, pollutant-degrading bacteria, and nutrient cycling bacteria were also selected as candidate indexes. Based on the distribution range, discriminatory power, and Pearson's correlation analysis for candidate indexes, five metrics, including the Shannon-index, the number of microbial phyla, the relative abundance of Verrucomicrobia, Chlorobi, and Mycobacterium were selected to establish a biotic integrity index of microbes (M-IBI) evaluation system. A ratio score system was used to get metrics into a uniform score for all sampling points, and the results showed that among the urban river samples studied, most of them (40.9%) were at "Great" level, 45.5% were at "Good" level, 9.1% were at "Moderate" level, and 4.5% were at "Bad" level. The index of M-IBI effectively discriminated the least, medium, and highly impaired sampling points and provided a good match with the water quality (R=0.753, P<0.01), indicating that the M-IBI has potential as an index to evaluate the health of urban river ecosystems.


Assuntos
Ecossistema , Monitoramento Ambiental , Microbiota , Rios/microbiologia , Qualidade da Água , Bactérias/classificação , China
8.
Ying Yong Sheng Tai Xue Bao ; 30(2): 668-676, 2019 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-30915820

RESUMO

Farmland soil organic carbon (SOC) pool is a crucial component of global carbon cycle. Due to the widely-implemented straw returning, crop straws have become the primary exogenous carbon source for agricultural soils. The conversion and distribution of straw-derived carbon in soil directly affect the composition and contents of SOC, with further influence on soil nutrient cycling. Based on recent studies, this review investigated the factors impacting the transformation and distribution of straw-carbon; introduced the microbial composition that contributes to the assimilation of carbon from straw; and summarized the effects of straw-carbon on the composition, content, and turnover of SOC. Additionally, we proposed the future research regarding the effects of abiotic factors on the bio-transformation of straw-carbon; the interaction between biotic and abiotic factors during the straw carbon transformation processes; the coupling of carbon and nitrogen from straws into the soil carbon and nitrogen cycles; and the effective control over the transformation of straw-carbon that enters the active or stable soil organic carbon pool. The purpose was to reveal variation characteristics of SOC during straw returning, and provide theoretical basis and technical support for the efficient fertilization and carbon sequestration of straw returning.


Assuntos
Solo , Agricultura , Carbono , Sequestro de Carbono
9.
Tumori ; 105(3): 231-242, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30674231

RESUMO

The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial-mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.


Assuntos
Antígenos CD/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Semaforinas/genética , Neoplasias da Bexiga Urinária/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Antiviral Res ; 161: 108-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503887

RESUMO

Enterovirus D68 (EV-D68) is a causative agent of recent outbreaks of severe respiratory illness, pneumonia and acute flaccid myelitis (AFM) worldwide. The study of the pathogenesis, vaccines and anti-viral drugs for EV-D68 infection has been reported. Given the previously described mouse model of EV-D68, we sought to establish a neonatal mice model inducing both pneumonia and AFM. The neonatal BALB/c mice were inoculated intraperitoneally with the EV-D68 strain (named15296-virus) which was produced by the reverse genetics method. The infected mice displayed limb paralysis, tachypnea and even death, which were similar to the clinical symptoms of human infections. Moreover, the results of histopathologic examination and immunohistochemical staining showed acidophilic necrosis in the muscle, the spinal cord and alveolar wall thickening in the lung, indicating that EV-D68 exhibited strong tropism to the muscles, spinal cord and lung. Furthermore, the results of real-time PCR also suggested that the viral loads in the blood, spinal cord, muscles and lung were higher than those in other tissues at different time points post-infection. Additionally, the neonatal mouse model was used for evaluating the EV-D68 infection. The results of the anti-serum passive and maternal antibody protection indicated that the neonatal mice could be protected against the EV-D68 challenge, and displayed that both the serum of 15296-virus and prototype-virus (Fermon) were performing a certain cross-protective activity against the 15296-virus challenge. In summary, the above results proved that our neonatal mouse model possessed not only the interstitial pneumonia and AFM simultaneously but also a potentiality to evaluate the protective effects of EV-D68 vaccines and anti-viral drugs in the future.

11.
Protein Cell ; 10(6): 417-435, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30069858

RESUMO

Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders.

12.
Nanotechnology ; 29(44): 445501, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30109994

RESUMO

Porous ZnO nanobelts sensitized with Ag nanoparticles have been prepared via a partial cation-exchange reaction assisted by a thermal oxidation treatment, employing ZnSe·0.5N2H4 nanobelts as precursors. After partially exchanged with Ag+ cations, the belt-like morphology of the precursors is still preserved. Continuously calcined in air, they are in situ transformed into Ag nanoparticles sensitized porous ZnO nanobelts. The size of the Ag nanoparticles can be tuned through manipulating the amount of exchanging Ag+ cations. Considering the porous and belt-like nanostructure, sensing characteristics of ZnO and the catalytic activity of Ag nanoparticles, the gas sensing performances of the as-prepared Ag nanoparticles sensitized porous ZnO nanobelts have been carefully investigated. The results indicate that Ag nanoparticles significantly enhance the sensing performances of porous ZnO nanobelts toward typical volatile organic compounds. Especially, a good selectivity has been demonstrated toward acetic acid gas with a low detection limit less than 1 ppm. Furthermore, they also display a good reproducibility with a short response/recovery time due to the thin, uniform and porous sensing film, which is fabricated with the assembled technique and in situ calcined approach. Finally, their sensing mechanism has been further discussed.

13.
Radiat Res ; 190(5): 494-503, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095367

RESUMO

Connexin molecules are an important component of the gap junction, with connexin43 (Cx43) being the most abundantly expressed type. Src is a nonreceptor tyrosine-protein kinase that affects Cx43 activity by multiple mechanisms. However, it is not clear how Src regulates Cx43 to influence radiation-induced bystander effects (RIBEs). In this study, we demonstrated that Cx43 on Tyr265 was phosphorylated by activated Src in α-irradiated HepG2 cells, with the total expression of Cx43 unchanged. After inhibition of Cx43 phosphorylation in irradiated cells, the frequency of γ-H2AX foci formation in adjacent nonirradiated bystander cells was significantly enhanced. Furthermore, this study showed that autophagy regulated the activity of Src and phosphorylation of Cx43, and the level of autophagy was correlated with the radiation-induced reactive oxygen species (ROS). These results suggest that ROS and autophagy play an important role in regulating the Src-Cx43 axis to affect the RIBEs. Our findings provide new insights into the Cx43-mediated gap junction intercellular communication, as well as the underlying mechanism of RIBEs.


Assuntos
Autofagia/fisiologia , Comunicação Celular/fisiologia , Conexina 43/fisiologia , Junções Comunicantes/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Efeito Espectador , Células Hep G2 , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
14.
Hum Vaccin Immunother ; 14(12): 3034-3040, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30060712

RESUMO

Coxsackievirus A6 (CV-A6) is one of pathogens causing hand, foot and mouth disease (HFMD) and becomes a new challenge to HFMD control. In this study, we first built a single-round pseudovirus infection system for CV-A6, and then developed a pseudovirus luciferase assay (PVLA) for anti-CV-A6 neutralizing antibody (NtAb) quantification. Since cytopahtic effect (CPE) is considered as the gold standard test for anti-enterovirus NtAb detection, a comparison study has been performed using 318 clinical serum samples, as measured both by PVLA and CPE. The sensitivity and specificity of PVLA was 94.9% (95% CI between 90.8-97.5%) and 92.7% (95% CI between 86.6-96.6%), respectively. Statistical analysis revealed that PVLA and CPE were highly correlated (spearman r = 0.931, P < 0.0001) and in good agreement (94.0%, 95% CI between 90.8-96.4%), showing that PVLA could be used as a surrogate assay for anti-CV-A6 NtAb detection and served as a valuable tool for CV-A6 vaccine evaluation and CV-A6 epidemiological surveillance.

15.
Emerg Microbes Infect ; 7(1): 99, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29872035

RESUMO

Enterovirus 68 (EV-D68) is associated with respiratory diseases, such as acute upper respiratory tract infections (URTIs), lower respiratory tract infections (LRTIs), pneumonia, neurological diseases, and acute flaccid myelitis (AFM). In recent years, there have been global outbreaks of EV-D68 epidemics. However, there is no effective vaccine against EV-D68, and the understanding of the seroprevalence characteristics of EV-D68 is limited. To evaluate the epidemiological features of this emerging infection in mainland China, serum samples from 20 pairs of pregnant women and their neonates, 405 infants and children (ages 1 month-15 years), and 50 adults were collected to measure EV-D68 neutralizing antibodies (NtAbs). The results showed that the geometric mean titers (GMTs) of pregnant women and their neonates were 168 (95%CI: 93.6-301.7) and 162.3 (95%CI: 89.9-293.1), respectively. The seroprevalence rate of EV-D68 antibodies was negatively correlated with age in 1-month-old to 12-month-old infants (84% for 1-month-old infants vs 10% for 1-year-old infants), whereas it was positively correlated with age for 1-year-old to 15-year-old children (10% for 1-year-old children vs 92% for 15-year-old children). This study evaluated maternal antibodies against EV-D68 in neonates. Our results showed that if mothers had high levels of anti-EV-D68 NtAbs, the NtAbs titers in their neonates were also high. The GMTs and seroprevalence rates of each age group indicated that EV-D68 infection was very common in China. Periodical EV-D68 seroprevalence surveys and vaccination campaigns should be the top priority for preventing EV-D68 infection.


Assuntos
Anticorpos Antivirais/sangue , Enterovirus Humano D/isolamento & purificação , Infecções por Enterovirus/sangue , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Criança , Pré-Escolar , China/epidemiologia , Estudos Transversais , Enterovirus Humano D/classificação , Enterovirus Humano D/genética , Enterovirus Humano D/imunologia , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Feminino , Humanos , Lactente , Masculino , Filogenia , Gravidez , Gestantes , Estudos Soroepidemiológicos , Adulto Jovem
16.
Chemistry ; 24(39): 9877-9883, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29637632

RESUMO

Porous single-crystalline nanostructures are of tremendous interest for their application in the catalytic, electronic and sensing fields due to their large active surfaces, favorable diffusion, and good electronic transport. Despite the recent advances of various other components, photoelectric chalcogenides remain almost undeveloped. The present study contributes a facile strategy to prepare porous single-crystalline CdSe nanobelts through a cation-exchange reaction, in which ZnSe⋅0.5 N2 H4 hybrid nanobelts are employed as precursors. The detailed characterizations indicate the preservation of the belt-like morphology of the precursors due to the spatial confinement effect, which arises from the coated surfactant layer during the cation-exchange process. Simultaneously, CdSe nanobelts with porous and single-crystalline structures are formed following a complete exchange between Zn2+ and Cd2+ , the release of N2 H4 , and the atomic arrangement. The native photoelectric properties of the as-prepared porous single-crystalline CdSe nanobelts are systematically addressed based on the nanodevices fabricated with a single nanobelt and assembled nanobelt array. The results indicate that they present a rapid, stable, and repeatable photoelectric response. Moreover, as-prepared nanobelts exhibit highly selective photoelectric sensing toward Cu2+ with a low detection limit down to 0.1 ppm. To illuminate this phenomenon, a possible sensing mechanism is also discussed.

17.
Environ Sci Pollut Res Int ; 25(17): 16816-16824, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616477

RESUMO

Methanotrophs not only oxidize CH4, but also can oxidize a relatively broad range of other substrates, including trichloroethylene, alkanes, alkenes, and aromatic compounds. In this study, Methylosinus sporium was used as a model organism to characterize toluene metabolism by methanotrophs. Reverse transcription quantitative PCR analysis showed that toluene enhanced the mmoX expression of M. sporium. When the toluene concentration was below 2000 mg m-3, the kinetics of toluene metabolism by M. sporium conformed to the Michaelis-Menten equation (Vmax = 0.238 g gdry weight-1 h-1, K m = 545.2 mg m-3). The use of a solid-phase extraction technique followed by a gas chromatography-mass spectrometry analysis and molecular docking calculation showed that toluene was likely to primarily bind the di-iron center structural region of soluble methane monooxygenase (sMMO) hydroxylase and then be oxidized to o-cresol. Although M. sporium oxidized toluene, it did not incorporate toluene into its biomass. The coexistence of toluene and CH4 could influence CH4 oxidation, the growth of methanotrophs, and the distribution of CH4-derived carbon, which were related to the ratio of the toluene concentration to biomass. These results would be helpful to understand the metabolism of CH4 and non-methane volatile organic compounds in the environment.


Assuntos
Metano/metabolismo , Oxigenases/metabolismo , Tolueno/metabolismo , Tricloroetileno/metabolismo , Biomassa , Cinética , Metano/química , Simulação de Acoplamento Molecular , Oxirredução , Oxigenases/química , Tolueno/química , Tricloroetileno/química
18.
Bioinformatics ; 34(12): 2004-2011, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29385401

RESUMO

Motivation: Tumor purity and ploidy have a substantial impact on next-gen sequence analyses of tumor samples and may alter the biological and clinical interpretation of results. Despite the existence of several computational methods that are dedicated to estimate tumor purity and/or ploidy from The Cancer Genome Atlas (TCGA) tumor-normal whole-genome-sequencing (WGS) data, an accurate, fast and fully-automated method that works in a wide range of sequencing coverage, level of tumor purity and level of intra-tumor heterogeneity, is still missing. Results: We describe a computational method called Accurity that infers tumor purity, tumor cell ploidy and absolute allelic copy numbers for somatic copy number alterations (SCNAs) from tumor-normal WGS data by jointly modelling SCNAs and heterozygous germline single-nucleotide-variants (HGSNVs). Results from both in silico and real sequencing data demonstrated that Accurity is highly accurate and robust, even in low-purity, high-ploidy and low-coverage settings in which several existing methods perform poorly. Accounting for tumor purity and ploidy, Accurity significantly increased signal/noise gaps between different copy numbers. We are hopeful that Accurity is of clinical use for identifying cancer diagnostic biomarkers. Availability and implementation: Accurity is implemented in C++/Rust, available at http://www.yfish.org/software/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias/genética , Ploidias , Software , Sequenciamento Completo do Genoma/métodos , Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
19.
Cancer Sci ; 109(4): 1032-1043, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29436067

RESUMO

Diagnosis of endometrial cancer is primarily based on symptoms and imaging, with early-stage disease being difficult to diagnose. Therefore, development of potential diagnostic biomarkers is required. Metabolomics, a quantitative measurement of the dynamic metabolism in living systems, can be applied to determine metabolite profiles in different disease states. Here, serum metabolomics was performed in 46 early stage endometrial cancer patients and 46 healthy volunteers. In addition, the effect of identified metabolites on tumor cell behavior (invasion, migration, proliferation, apoptosis and autophagy) was examined in endometrial cancer cell lines. Compared with controls, phenylalanine, indoleacrylic acid (IAA), phosphocholine and lyso-platelet-activating factor-16 (lyso-PAF) were differentially detected in patients. Functional analyses demonstrated that IAA, PAF and phenylalanine all dose-dependently inhibited tumor cell invasion and migration, and suppressed cell proliferation. PAF also induced tumor cell apoptosis and autophagy, while phenylalanine had no effect on apoptosis or autophagy. IAA triggered apoptosis and had a biphasic effect on autophagy: inhibiting autophagy with doses <1 mmol/L but inducing at 1 mmol/L. Interestingly, the alterations in proliferation, apoptosis and autophagy caused by 1 mmol/L IAA, were all reversed by the concomitant treatment of tryptophan (100 µmol/L). Phosphocholine inhibited tumor cell invasion and migration, and promoted cell proliferation and autophagy, all in a dose-dependent manner. Phosphocholine also protected cells from TNF-α-induced apoptosis. In conclusion, 4 serum metabolites were identified by serum metabolomics in endometrial cancer patients and functional analyses suggested that they may play roles in modulation of tumor cell behavior, although their exact mode of action still needs to be determined.


Assuntos
Neoplasias do Endométrio/metabolismo , Metaboloma/fisiologia , Apoptose/fisiologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Indóis/metabolismo , Metabolômica/métodos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Fenilalanina/metabolismo , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/metabolismo , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
ACS Sens ; 2(1): 102-110, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28722446

RESUMO

Hierarchical morphology-dependent gas-sensing performances have been demonstrated for three-dimensional SnO2 nanostructures. First, hierarchical SnO2 nanostructures assembled with ultrathin shuttle-shaped nanosheets have been synthesized via a facile and one-step hydrothermal approach. Due to thermal instability of hierarchical nanosheets, they are gradually shrunk into cone-shaped nanostructures and finally deduced into rod-shaped ones under a thermal treatment. Given the intrinsic advantages of three-dimensional hierarchical nanostructures, their gas-sensing properties have been further explored. The results indicate that their sensing behaviors are greatly related with their hierarchical morphologies. Among the achieved hierarchical morphologies, three-dimensional cone-shaped hierarchical SnO2 nanostructures display the highest relative response up to about 175 toward 100 ppm of acetone as an example. Furthermore, they also exhibit good sensing responses toward other typical volatile organic compounds (VOCs). Microstructured analyses suggest that these results are mainly ascribed to the formation of more active surface defects and mismatches for the cone-shaped hierarchical nanostructures during the process of thermal recrystallization. Promisingly, this surface-engineering strategy can be extended to prepare other three-dimensional metal oxide hierarchical nanostructures with good gas-sensing performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA