Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(12): 4798-4805, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35253826

RESUMO

Metal-organic frameworks (MOFs) provide an ideal platform for loading various guests owing to their available space, and can be developed as a class of multifunctional materials. Herein, we cover the design and synthesis of two kinds of exchanged frameworks with multifunctional applications based on H3ImDC and In(NO3)3·2H2O through guest exchange inside the framework. The guest ammonium ion (NH4+) and [Ru(2,2'-bipyridine)3]2+ (Rubpy) are selected to exchange the dimethylammonium cation (Me2NH2+) encapsulated within In-MOF, giving birth to two kinds of new MOFs, named NH4+@In-MOF and Rubpy@In-MOF respectively. The proton conduction of NH4+@In-MOF and the CO2 photoreduction of Rubpy@In-MOF are investigated. Under different test conditions, the proton conductive behaviors of NH4+@In-MOF are evaluated and the best proton conductive value can reach up to 9.81 × 10-3 S cm-1. Compared to the original In-MOF, Rubpy@In-MOF exhibits a significantly enhanced CO2 photoreduction performance under a pure CO2 atmosphere. Furthermore, its photocatalytic activity is retained even under a 10% CO2 gas atmosphere, displaying a synergistic effect between Rubpy and In-MOF24 within Rubpy@In-MOF.

2.
Inorg Chem ; 61(13): 5318-5325, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302364

RESUMO

Herein, a N-rich metal-organic framework (MOF) with four kinds of cages, Zn4(ade)2(TCA)2(H2O) (NENU-1000, Hade = adenine, H3TCA = 4,4',4″-tricarboxytriphenylamine, NENU = Northeast Normal University), was prepared by the mixed-ligand strategy. Cationic dyes can be selectively absorbed by NENU-1000 at proper concentrations, but not neutral and anionic dyes, which perhaps can be assigned to the N-rich neutral framework of NENU-1000. When NENU-1000 was introduced to a relatively lower concentration of cationic dye solutions (e.g., rhodamine B or basic red 2), the colors of these systems faded quickly. Furthermore, the faded solutions can be used for the detection of methanol and other small alcohol molecules with either the naked eye or common UV-vis spectra. The effect of the length of carbon chain, the position of the -OH group, and the number of the hydroxyl group of the alcohols was explored for the color development rate. In addition, the performance of NENU-1000 in iodine sorption and release was also studied.


Assuntos
Corantes , Estruturas Metalorgânicas , Álcoois , Carbono , Humanos
3.
Phys Chem Chem Phys ; 24(13): 7617-7623, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35293419

RESUMO

Photoredox/transition-metal dual catalysis could efficiently construct C-N bonds by a cross-coupling reaction. The limitations of low recovery, low utilization rate and high cost have hindered the application and development of low-cost and efficient transition metal catalytic cycles. The integration of heterogeneous metal and transition metal catalysis is an appealing alternative to realize the oxidation state modulation of active species. With the support of density functional theory (DFT) calculation, we have explored the mechanistic details of Ni-catalyzed C-N cross-coupling of aryl bromide and cyclic amine assisted by zinc powder. Zinc successfully regulates the oxidation state of NiII → NiI, thus achieving the NiI-NiIII-NiI catalytic cycle in the absence of light. In comparison, when the Ni(0) complex is employed as the initial catalyst, organic zinc reagents can still be involved in the transmetalation process to accelerate the cross-coupling reaction. We hope that such computational studies can provide theoretical reference for the design and development of low-cost and efficient catalytic systems for C-N cross-couplings.

4.
Inorg Chem ; 61(8): 3736-3745, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175759

RESUMO

Constructing high-quality white organic light-emitting diodes (WOLEDs) remains a big challenge because of high demands on the electroluminescence (EL) performance including high efficiency, excellent spectral stability, and low roll-off simultaneously. To achieve effective energy transfer and trap-assisted recombination in the emissive layer, herein, four Ir(III) phosphors, namely, mOMe-Ir-PI (1), pOMe-Ir-PI (2), mOMe-Ir-PB (3), and pOMe-Ir-PB (4), were strategically designed via simple regulation of the substituent moiety and π conjugation of the chelated ligands. Their photophysical and EL properties were systematically investigated. When these phosphors are employed as doped emitters, the monochromic green organic light-emitting diodes not only exhibit a superior performance with the characteristics of 50.2 cd A-1, 39.2 lm W-1, and 15.1%, but also maintain a negligible roll-off ratio of 0.2% at 1000 cd m-2, which are better than those of commercial green Ir(ppy)2acac and Ir(ppy)3 in the same device configuration. Inspired by these outstanding performances, we successfully fabricated the warm WOLED utilizing 2 as a green component, affording a peak efficiency of 42.0 cd A-1, 29.3 lm W-1, and 18.6% and retaining at 39.9 cd A-1, 23.7 lm W-1, and 17.4% even at 1000 cd m-2. The results herein demonstrate the superiority of the molecular design and propose a simple method toward the development of promising Ir(III) phosphors for high-efficiency WOLEDs.

5.
Chem Commun (Camb) ; 58(22): 3641-3644, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35212330

RESUMO

The room-temperature phosphorescence of 1,8-naphthalimide was activated by doping it into aromatic dicarboxylic acids. The doping system gives a bright yellow afterglow and 1,8-naphthalimide and isophthalic acid (0.02 mol% doping content) afford a phosphorescent lifetime of 403 ms and a quantum yield of 4.2%. Both energy transfer from the host to the guest and the formation of an intermolecular hydrogen-bonding network are responsible for the observed efficient and long-lived phosphorescence.


Assuntos
Ácidos Dicarboxílicos , Naftalimidas , Transferência de Energia , Luminescência , Temperatura
6.
ACS Appl Mater Interfaces ; 14(5): 6476-6483, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077129

RESUMO

The direct usage of CO2 in the flue gas to produce fuels or chemicals is of great significance from energy-saving and low-cost perspectives, yet it is still underexplored. Herein, we report the photoreduction of CO2 from the simulated industrial exhaust by synergistic catalysis of TEOA and a metal-free composite (COF1-g-C3N4) fabricated via covalently grafting COF1 with g-C3N4. The hydrogen bond interaction between TEOA and hydrazine units on COF1 is detected in diluted CO2, which leads to significantly enhanced light absorption in the whole visible-light region. Also, the photo-induced electrons undergo fast transfer from COF1 to g-C3N4. This kind of dynamic interface with enhanced light absorption and electron transfer effects promotes the photosynthetic yield of syngas to 165.6 µmol·g-1·h-1 with the use of simulated exhaust gas as a raw material directly. The photosynthetic yield of syngas ranks among the highest of known metal-free catalysts in diluted CO2. This work provides a general rule for designing efficient catalysts via a controlled catalytic interface and new insights into the role of TEOA in photochemical CO2 reduction.

7.
Inorg Chem ; 60(24): 18706-18714, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34823352

RESUMO

Polyoxometalates (POMs) have a broad array of applied platforms with well-characterized catalysis including photocatalysis to achieve aliphatic C(sp3)-H bond functionalization. However, the reaction mechanism of POMs in organic transformation remains unknown due to the complexity of POM structures. Here, a challenging [W10O32]4-/Ni metallaphotoredox-catalyzed C(sp3)-H arylation of alkane has been investigated by density functional theory (DFT) calculations. The calculation revealed that the superficial active center located in bridged oxygen of *[W10O32]4- is responsible for the abstraction of a foreign hydrogen atom and the activation of a C(sp3)-H bond. Furthermore, we discussed this activated process using the direct activation model of the C(sp3)-H σ-bond to deepen our mechanistic understanding of POM mediated C-H bond activation via the hydrogen atom transfer (HAT) pathway. Specifically, comparing three common mechanisms for nickel catalysis inducing by Ni0, NiI, and NiII to construct a C-C bond, the nickel catalytic cycle induced by the NiI active catalyst is profitable in kinetics and thermodynamics. Finally, a radical mechanism merging the ([W10O32]4--*[W10O32]4--[HW10O32]4--[W10O32]4-) decatungstate reductive quenching cycle, ([HW10O32]4--[H2W10O32]4--[HW10O32]4-) electron relay, and (NiI-NiII-NiI-NiIII-NiI) nickel catalytic cycle is proposed to be favorable. We hope that this work would provide a better understanding of the unique catalytic activity of decatungstate anions for the direct functionalization of the C(sp3)-H bond.

8.
Phys Chem Chem Phys ; 23(41): 23998-24003, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664046

RESUMO

Phenalenyl (PLY) and its derivatives could form one-dimensional π-aggregates through pancake π-π bonding, which would lead to exotic optoelectronic properties. We will highlight the key aspects of the PLY derivatives from the design strategies to exploration of the electronic properties. Here, we primarily construct alternating boron (B)- and nitrogen (N)-doped PLY π-aggregates: dimer[12], trimer[12-1], trimer[12-2], tetramer[12]2, pentamer[12]2-1, pentamer[12]2-2, and hexamer[12]3. The geometric and electronic structures show that the short intermolecular distances of the π-aggregates drive the formation of pancake π-π bonding. Significantly, the molecular structures show periodic changes in the π-aggregates, but the first hyperpolarizabilities (ßtot) present unexpected changes, which are found to increase sharply with increasing even layer thickness due to intermolecular charge transfer. The ßtot value of hexamer[12]3 (5.72 × 104 a.u.) is 6.4 times that of tetramer[12]2 (8.95 × 103 a.u.), and is 22.4 times that of dimer[12] (2.55 × 103 a.u.). Thus, constructing π-aggregates can significantly improve the second-order NLO response, which is mainly due to intermolecular charge transfer through pancake π-π bonding of the interlayers.

9.
Nanoscale ; 13(40): 16977-16985, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34610078

RESUMO

It is a promising strategy to prepare composite photocatalysts based on MOFs and semiconductors for enhancing photocatalytic reduction of carbon dioxide (CO2). A family of binary composite photocatalysts (CdS@UiO-66-NH2) with different CdS contents have been designed and synthesized, which have been explored for photocatalytic reduction of CO2. CdS@UiO-66-NH2 can efficiently convert CO2 into CO under visible light irradiation via the solid-gas mode in the absence of sacrificial agents and photosensitizers. The generation rate of CO can reach up to 280.5 µmol g-1 h-1, which is 2.13-fold and 2.9-fold improvements over the pristine CdS and UiO-66-NH2, respectively, and the selectivity for CO is very high. Furthermore, this kind of photocatalysts can still maintain great photocatalytic activity in CO2/N2 mixed atmosphere with different CO2 concentrations. The outstanding performances of CdS@UiO-66-NH2 may be attributed to the existence of the direct Z-scheme heterojunction, which possesses the enhanced separation and migration of photo-generated charge carriers between UiO-66-NH2 and CdS, available specific surface areas and improved visible light absorption ability as well as abundant reaction active sites. This case reveals that MOF-based composite photocatalysts exhibit promising potential applications in the field of CO2 conversion.

10.
Dalton Trans ; 50(33): 11535-11541, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34350926

RESUMO

Two tetra-nuclear YbIII-incorporated selenotungstate clusters, Keggin (C2H8N)6Na14[Yb4Se6W44O160(H2O)12]·40H2O (1) and Wells-Dawson (C2H8N)4Na14[Yb4Se6W45O159(OH)6(H2O)11]·38H2O (2), have been isolated through a pH-controlled assembly, which exhibit the first YbIII-containing polyoxotungstates with selenium heteroatoms. Their assemblies rely on the structure-directing effects of SeO32- anion templates to give rise to available Se-containing Keggin-/Wells-Dawson-type motifs. Both compounds were characterized by single-crystal X-ray diffraction, IR spectroscopy, power X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) as well as electrospray ionization mass spectrometry (ESI-MS). Furthermore, systematic magnetic studies revealed that 1 exhibits field-induced single-molecule magnetic behavior with a pre-exponential factor of τ0 = 6.60(7) × 10-8 s and a relaxation energy barrier of ΔE/kB = 39.44(2) K, while 2 only displays antiferromagnetic interactions between the ytterbium centers.

11.
Luminescence ; 36(6): 1476-1482, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34009712

RESUMO

Temperature sensitive paints (TSPs) are a class of rising materials for non-contact temperature measurement technology. Efficient complexes with remarkable luminescent properties play the core role in TSPs. Rare earth organic complexes are often used as probe molecules for TSPs because of their long fluorescence lifetime, narrow fluorescence emission peaks, high fluorescence intensity, and large Stokes shift. Herein, two europium-based complexes, Eu(PCCA)3 phen and Eu (PMCA)3 phen, were synthesized under hydrothermal conditions, using europium(III) oxide (Eu2 O3 ), p-chlorocinnamic acid (PCCA), p-methoxy cinnamic acid (PMCA) and 1,10-phenanthroline (phen) as raw materials. Two temperature sensitive paints (Eu(PCCA)3 phen/PMMA and Eu(PMCA)3 phen/PMMA) were obtained by the polymerization of methyl methacrylate (MMA) with different europium complexes. The structure, morphology, luminescent properties of the europium complexes and temperature quenching properties of the TSPs were characterized by infrared (IR) spectroscopy, scanning electron microscopy (SEM), and fluorescence spectroscopy. The fluorescence results show that both of the two TSPs have good temperature quenching performance in the range 20-100°C with high sensitivity 50-60°C and 80-90°C, respectively. Furthermore, the highest sensitivity of Eu(PCCA)3 phen/PMMA is greater than that of Eu(PMCA)3 phen/PMMA. This work can provide a universal way for preparing efficient TSPs in practical applications.


Assuntos
Európio , Fenantrolinas , Ligantes , Luminescência , Temperatura
12.
Adv Sci (Weinh) ; 8(14): e2100911, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050717

RESUMO

Developing flexible electrodes with high active materials loading and excellent mechanical stability is of importance to flexible electronics, yet remains challenging. Herein, robust flexible electrodes with an encapsulated core-multishell structure are developed via a spraying-hydrothermal process. The multilayer electrode possesses an architecture of substrate/reduced graphene oxide (rGO)/bimetallic complex/rGO/bimetallic complex/rGO from the inside to the outside, where the cellulosic fibers serve as the substrate, namely, the core; and the multiple layers of rGO and bimetallic complex, are used as active materials, namely, the shells. The inner two rGO interlayers function as the cement that chemically bind to two adjacent layers, while the two outer rGO layers encapsulate the inside structure effectively protecting the electrode from materials detachment or electrolyte corrosion. The electrodes with a unique core-multishell structure exhibit excellent cycle stability and exceptional temperature tolerance (-25 to 40 °C) for lithium and sodium storage. A combination of experimental and theoretical investigations are carried out to gain insights into the synergetic effects of cobalt-molybdenum-sulfide (CMS) materials (the bimetallic complex), which will provide guidance for future exploration of bimetallic sulfides. This strategy is further demonstrated in other substrates, showing general applicability and great potential in the development of flexible energy storage devices.

13.
Inorg Chem ; 60(10): 7364-7371, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33891407

RESUMO

Photocatalytic carbon dioxide reduction (CO2RR) is considered to be a promising sustainable and clean approach to solve environmental issues. Polyoxometalates (POMs), with advantages in fast, reversible, and stepwise multiple-electron transfer without changing their structures, have been promising catalysts in various redox reactions. However, their performance is often restricted by poor thermal or chemical stability. In this work, two transition-metal-modified vanadoborate clusters, [Co(en)2]6[V12B18O54(OH)6]·17H2O (V12B18-Co) and [Ni(en)2]6[V12B18O54(OH)6]·17H2O (V12B18-Ni), are reported for photocatalytic CO2 reduction. V12B18-Co and V12B18-Ni can preserve their structures to 200 and 250 °C, respectively, and remain stable in polar organic solvents and a wide range of pH solutions. Under visible-light irradiation, CO2 can be converted into syngas and HCOO- with V12B18-Co or V12B18-Ni as catalysts. The total amount of gaseous products and liquid products for V12B18-Co is up to 9.5 and 0.168 mmol g-1 h-1. Comparing with V12B18-Co, the yield of CO for V12B18-Ni declines by 1.8-fold, while that of HCOO- increases by 35%. The AQY of V12B18-Co and V12B18-Ni is 1.1% and 0.93%, respectively. These values are higher than most of the reported POM materials under similar conditions. The density functional theory (DFT) calculations illuminate the active site of CO2RR and the reduction mechanism. This work provides new insights into the design of stable, high-performance, and low-cost photocatalysts for CO2 reduction.

14.
Chemistry ; 27(37): 9571-9579, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-33786898

RESUMO

Quantum mechanical and molecular dynamics simulations have been carried out on a series of anthracene-o-carborane derivatives (ANT-H, ANT-Ph, ANT-Me and ANT-TMS) with rare red-light emission in the solid state. The simulation of the heating process of the crystals and further comparison of the molecular structures and excited-state properties before and after heating help us to disclose the thermochromic behavior, that is, the red-shift emission is caused by elongation of the C1-C2 bond in the carborane moiety after heating. Thus, we believe that the molecular structure in the crystal is severely affected by heating. Transformation of the molecular conformation appears in the ANT-H crystal with increasing temperature. More specifically, the anthracene moiety moves from nearly parallel to the C1-C2 bond to nearly perpendicular, causing the short-wavelength emission to disappear after heating. As for the aggregation-induced emission phenomenon, the structures and photophysical properties were investigated comparatively in both the isolated and crystal states; the results suggested that the energy dissipation in crystal surroundings was greatly reduced through hindering structure relaxation from the excited to the ground state. We expect that discussion of the thermochromic behavior will provide a new analysis perspective for the molecular design of o-carborane derivatives.

15.
ACS Nano ; 15(4): 7318-7327, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33784808

RESUMO

The solid-solid conversion of Li2S2 to Li2S is a crucial and rate-controlling step that provides one-half of the theoretical capacity of lithium-sulfur (Li-S) batteries. The catalysts in the Li-S batteries are often useless in the solid-solid conversion due to the poor contact interfaces between solid catalysts and insoluble solid Li2S2. Considering that ultrafine nanostructured materials have the properties of quantum size effects and unconventional reactivities, we design and synthesize for the pomegranate-like sulfur nanoclusters@nitrogen-doped carbon@nitrogen-doped carbon nanospheres (S@N-C@N-C NSs) with a seed-pulp-peel nanostructure. The ultrafine S@N-C subunits (diameter ≈5 nm) and effects of a spatial structure perfectly realize the rapid conversion of ultrafine Li2S2 to Li2S. The S@N-C@N-C seed-pulp-peel NS cathodes exhibit excellent sulfur utilization, superb rate performance (760 mAh g-1 at 10.0 C), and an ultralow capacity decay rate of about 0.016% per cycle over 1000 cycles at 4.0 C. The proposed strategy based on ultrafine nanostructured materials can also inform material engineering in related energy storage and conversion fields.

16.
ACS Appl Mater Interfaces ; 13(2): 2462-2471, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33411498

RESUMO

The rational design and construction of multifunctional electrocatalysts with high activity, low cost, and outstanding stability are highly desirable for the development of renewable energy but are still a big challenge. Bimetallic catalysts are a kind of promising candidates, like the hybrids of Co and VN nanoparticles (Co/VN). However, the inevitable aggregation during the preparation and electrochemical process lowers their reactivity and durability. Herein, small Co/VN nanoparticles (4-8 nm) embedded in porous graphitic carbon layers (Co/VN NPs@C) were obtained through the pyrolysis of metal-organic frameworks (MOFs). The synergistic effect of in situ generated Co and VN NPs together with fast electron transfer from graphitic carbon layers renders this catalyst to possess excellent trifunctional performance. More attractively, Co/VN NPs@C as both the anode and the cathode shows a low voltage of 1.58 V when the current density is up to 10 mA cm-2, exceeding most electrocatalysts based on non-noble metals. The rechargeable Zn-air batteries constructed by Co/VN NPs@C deliver high round-trip efficiency together with a peak power density of 130 mW cm-2, a specific capacity of 757 mAh g-1, and desirable stability, outperforming the traditional Zn-air batteries based on the Pt/C and RuO2 pair. This work opens a promising avenue toward constructing highly effective multifunctional electrocatalysts by designing small-sized nanoparticles with various active sites derived from MOFs.

17.
Chem Commun (Camb) ; 57(8): 1042-1045, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33409516

RESUMO

An unprecedented Mo-organic molecular cage built on interesting {MoVI2O5} secondary building blocks and BTC ligands, which has been successfully synthesized and systematically characterized, presents the first example of an isopolyoxomolybdates(vi)-organic molecular cage. An investigation into the related Cs+-exchange experiment was performed in detail.

18.
Nanotechnology ; 32(7): 075602, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33241790

RESUMO

The mercury ions in waste water have threatened public health and environmental protection. In this sense, novel materials with outstanding performances for removal of Hg2+ are imperative. Herein, we demonstrate a thiol-functionalized zirconium metal-organic cage (MOC-(SH)2) with excellent dispersion displays ideal properties for Hg2+ capture. MOC-(SH)2 exhibits the ability of removing Hg2+ in aqueous solutions with a capacity of 335.9 mgHg2+/gMOC-(SH)2, which surpasses that of classical Zr-based metal-organic framework Uio-66-(SH)2 by 1.89 folds. The higher loading capacity of MOC-(SH)2 is probably owing to the excellent dispersion of the discrete cage, which makes the accessibility of binding sites (thiol) easier. Additionally, 99.6% of Hg2+ can be effectively captured by MOC-(SH)2 with the concentration decreased from 5 to 0.02 ppm reaching the permissible limit for Hg2+, outperforming the performance of Uio-66-(SH)2. The excellent absorption property of MOC-(SH)2 is also achieved in terms of superior selectivity under the presence of competitive metal ions. Meanwhile, the regenerated MOC-(SH)2 can be reused without apparent loss of Hg2+ loading capacity. UV-vis absorption spectra, IR spectra and emission spectra further verified the strong chemical affinity between Hg2+ and the thiol of MOC-(SH)2. The study lays the groundwork for using Zr-MOCs in the removal of toxic metal ions and environmental sustainability.

19.
J Org Chem ; 86(1): 484-492, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33295780

RESUMO

Recent experimental work reported that visible-light photoredox catalysis coupled with primary sulfonamides and electron-deficient alkenes could efficiently construct C-C bonds at the α-position of primary amine derivatives under mild conditions. Here, a systematic study was conducted to explore the non-negligible excited-state single-electron-transfer (SET) processes and the catalytic cycle. Hydrogen atom transfer (HAT) catalysis containing different site-selective functionalization, involved as a critical process during the reaction, was computationally characterized. The superiorities of iridium-based photoredox catalysts in terms of photoabsorption properties, phosphorescence rates, and electron-transfer rates for SET processes were focused on. In addition, the function of quinuclidine in the entire photocatalytic reaction was also probed. These intrinsic properties and detailed insights into the mechanism are supposed to be helpful to the understanding of the C-C bond functionalization reaction and the future application of the iridium-based photoredox catalyst.

20.
RSC Adv ; 11(61): 38814-38819, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493234

RESUMO

The remarkably reversible thermochromic luminescence behavior and the rare nonlinear optical (NLO) properties of the [Ag55(MoO4)6(C[triple bond, length as m-dash]C t Bu)24(CH3COO)18(CH3COO)]·2H2O ({Ag55Mo6} for short) nanocluster reported were investigated experimentally. The important contributions of Ag+, C[triple bond, length as m-dash]C- ions and MoO4 2- groups to the NLO properties were proved by further density functional theory (DFT) calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...