Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Mol Biol Evol ; 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528560

RESUMO

Spatially-explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented ten years ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyse the spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up, run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.

2.
Lancet Digit Health ; 3(2): e98-e114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33342753

RESUMO

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have been postulated to affect susceptibility to COVID-19. Observational studies so far have lacked rigorous ascertainment adjustment and international generalisability. We aimed to determine whether use of ACEIs or ARBs is associated with an increased susceptibility to COVID-19 in patients with hypertension. METHODS: In this international, open science, cohort analysis, we used electronic health records from Spain (Information Systems for Research in Primary Care [SIDIAP]) and the USA (Columbia University Irving Medical Center data warehouse [CUIMC] and Department of Veterans Affairs Observational Medical Outcomes Partnership [VA-OMOP]) to identify patients aged 18 years or older with at least one prescription for ACEIs and ARBs (target cohort) or calcium channel blockers (CCBs) and thiazide or thiazide-like diuretics (THZs; comparator cohort) between Nov 1, 2019, and Jan 31, 2020. Users were defined separately as receiving either monotherapy with these four drug classes, or monotherapy or combination therapy (combination use) with other antihypertensive medications. We assessed four outcomes: COVID-19 diagnosis; hospital admission with COVID-19; hospital admission with pneumonia; and hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis. We built large-scale propensity score methods derived through a data-driven approach and negative control experiments across ten pairwise comparisons, with results meta-analysed to generate 1280 study effects. For each study effect, we did negative control outcome experiments using a possible 123 controls identified through a data-rich algorithm. This process used a set of predefined baseline patient characteristics to provide the most accurate prediction of treatment and balance among patient cohorts across characteristics. The study is registered with the EU Post-Authorisation Studies register, EUPAS35296. FINDINGS: Among 1 355 349 antihypertensive users (363 785 ACEI or ARB monotherapy users, 248 915 CCB or THZ monotherapy users, 711 799 ACEI or ARB combination users, and 473 076 CCB or THZ combination users) included in analyses, no association was observed between COVID-19 diagnosis and exposure to ACEI or ARB monotherapy versus CCB or THZ monotherapy (calibrated hazard ratio [HR] 0·98, 95% CI 0·84-1·14) or combination use exposure (1·01, 0·90-1·15). ACEIs alone similarly showed no relative risk difference when compared with CCB or THZ monotherapy (HR 0·91, 95% CI 0·68-1·21; with heterogeneity of >40%) or combination use (0·95, 0·83-1·07). Directly comparing ACEIs with ARBs demonstrated a moderately lower risk with ACEIs, which was significant with combination use (HR 0·88, 95% CI 0·79-0·99) and non-significant for monotherapy (0·85, 0·69-1·05). We observed no significant difference between drug classes for risk of hospital admission with COVID-19, hospital admission with pneumonia, or hospital admission with pneumonia, acute respiratory distress syndrome, acute kidney injury, or sepsis across all comparisons. INTERPRETATION: No clinically significant increased risk of COVID-19 diagnosis or hospital admission-related outcomes associated with ACEI or ARB use was observed, suggesting users should not discontinue or change their treatment to decrease their risk of COVID-19. FUNDING: Wellcome Trust, UK National Institute for Health Research, US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, IQVIA, South Korean Ministry of Health and Welfare Republic, Australian National Health and Medical Research Council, and European Health Data and Evidence Network.

3.
medRxiv ; 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33269356

RESUMO

Objective: To estimate the proportion of patients hospitalized with COVID-19 who undergo dialysis, tracheostomy, and extracorporeal membrane oxygenation (ECMO). Design: A network cohort study. Setting: Six databases from the United States containing routinely-collected patient data: HealthVerity, Premier, IQVIA Open Claims, Optum EHR, Optum SES, and VA-OMOP. Patients: Patients hospitalized with a clinical diagnosis or a positive test result for COVID-19. Interventions: Dialysis, tracheostomy, and ECMO. Measurements and Main Results: 240,392 patients hospitalized with COVID-19 were included (22,887 from HealthVerity, 139,971 from IQVIA Open Claims, 29,061 from Optum EHR, 4,336 from OPTUM SES, 36,019 from Premier, and 8,118 from VA-OMOP). Across the six databases, 9,703 (4.04% [95% CI: 3.96% to 4.11%]) patients received dialysis, 1,681 (0.70% [0.67% to 0.73%]) had a tracheostomy, and 398 (0.17% [95% CI: 0.15% to 0.18%]) patients underwent ECMO over the 30 days following hospitalization. Use of ECMO was generally concentrated among patients who were younger, male, and with fewer comorbidities except for obesity. Tracheostomy was used for a similar proportion of patients regardless of age, sex, or comorbidity. While dialysis was used for a similar proportion among younger and older patients, it was more frequent among male patients and among those with chronic kidney disease. Conclusion: Use of dialysis among those hospitalized with COVID-19 is high at around 4%. Although less than one percent of patients undergo tracheostomy and ECMO, the absolute numbers of patients who have undergone these interventions is substantial and can be expected to continue grow given the continuing spread of the COVID-19.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33367863

RESUMO

OBJECTIVES: Concern has been raised in the rheumatology community regarding recent regulatory warnings that HCQ used in the coronavirus disease 2019 pandemic could cause acute psychiatric events. We aimed to study whether there is risk of incident depression, suicidal ideation or psychosis associated with HCQ as used for RA. METHODS: We performed a new-user cohort study using claims and electronic medical records from 10 sources and 3 countries (Germany, UK and USA). RA patients ≥18 years of age and initiating HCQ were compared with those initiating SSZ (active comparator) and followed up in the short (30 days) and long term (on treatment). Study outcomes included depression, suicide/suicidal ideation and hospitalization for psychosis. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate database-specific calibrated hazard ratios (HRs), with estimates pooled where I2 <40%. RESULTS: A total of 918 144 and 290 383 users of HCQ and SSZ, respectively, were included. No consistent risk of psychiatric events was observed with short-term HCQ (compared with SSZ) use, with meta-analytic HRs of 0.96 (95% CI 0.79, 1.16) for depression, 0.94 (95% CI 0.49, 1.77) for suicide/suicidal ideation and 1.03 (95% CI 0.66, 1.60) for psychosis. No consistent long-term risk was seen, with meta-analytic HRs of 0.94 (95% CI 0.71, 1.26) for depression, 0.77 (95% CI 0.56, 1.07) for suicide/suicidal ideation and 0.99 (95% CI 0.72, 1.35) for psychosis. CONCLUSION: HCQ as used to treat RA does not appear to increase the risk of depression, suicide/suicidal ideation or psychosis compared with SSZ. No effects were seen in the short or long term. Use at a higher dose or for different indications needs further investigation. TRIAL REGISTRATION: Registered with EU PAS (reference no. EUPAS34497; http://www.encepp.eu/encepp/viewResource.htm? id=34498). The full study protocol and analysis source code can be found at https://github.com/ohdsi-studies/Covid19EstimationHydroxychloroquine2.

5.
Nat Commun ; 11(1): 5620, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159066

RESUMO

Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.

6.
medRxiv ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33140074

RESUMO

Objectives To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children/adolescents diagnosed or hospitalized with COVID-19. Secondly, to describe health outcomes amongst children/adolescents diagnosed with previous seasonal influenza. Design International network cohort. Setting Real-world data from European primary care records (France/Germany/Spain), South Korean claims and US claims and hospital databases. Participants Diagnosed and/or hospitalized children/adolescents with COVID-19 at age <18 between January and June 2020; diagnosed with influenza in 2017-2018. Main outcome measures Baseline demographics and comorbidities, symptoms, 30-day in-hospital treatments and outcomes including hospitalization, pneumonia, acute respiratory distress syndrome (ARDS), multi-system inflammatory syndrome (MIS-C), and death. Results A total of 55,270 children/adolescents diagnosed and 3,693 hospitalized with COVID-19 and 1,952,693 diagnosed with influenza were studied. Comorbidities including neurodevelopmental disorders, heart disease, and cancer were all more common among those hospitalized vs diagnosed with COVID-19. The most common COVID-19 symptom was fever. Dyspnea, bronchiolitis, anosmia and gastrointestinal symptoms were more common in COVID-19 than influenza. In-hospital treatments for COVID-19 included repurposed medications (<10%), and adjunctive therapies: systemic corticosteroids (6.8% to 37.6%), famotidine (9.0% to 28.1%), and antithrombotics such as aspirin (2.0% to 21.4%), heparin (2.2% to 18.1%), and enoxaparin (2.8% to 14.8%). Hospitalization was observed in 0.3% to 1.3% of the COVID-19 diagnosed cohort, with undetectable (N<5 per database) 30-day fatality. Thirty-day outcomes including pneumonia, ARDS, and MIS-C were more frequent in COVID-19 than influenza. Conclusions Despite negligible fatality, complications including pneumonia, ARDS and MIS-C were more frequent in children/adolescents with COVID-19 than with influenza. Dyspnea, anosmia and gastrointestinal symptoms could help differential diagnosis. A wide range of medications were used for the inpatient management of pediatric COVID-19.

7.
Epidemics ; 33: 100418, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33221671

RESUMO

In emerging epidemics, early estimates of key epidemiological characteristics of the disease are critical for guiding public policy. In particular, identifying high-risk population subgroups aids policymakers and health officials in combating the epidemic. This has been challenging during the coronavirus disease 2019 (COVID-19) pandemic because governmental agencies typically release aggregate COVID-19 data as summary statistics of patient demographics. These data may identify disparities in COVID-19 outcomes between broad population subgroups, but do not provide comparisons between more granular population subgroups defined by combinations of multiple demographics. We introduce a method that helps to overcome the limitations of aggregated summary statistics and yields estimates of COVID-19 infection and case fatality rates - key quantities for guiding public policy related to the control and prevention of COVID-19 - for population subgroups across combinations of demographic characteristics. Our approach uses pseudo-likelihood based logistic regression to combine aggregate COVID-19 case and fatality data with population-level demographic survey data to estimate infection and case fatality rates for population subgroups across combinations of demographic characteristics. We illustrate our method on California COVID-19 data to estimate test-based infection and case fatality rates for population subgroups defined by gender, age, and race/ethnicity. Our analysis indicates that in California, males have higher test-based infection rates and test-based case fatality rates across age and race/ethnicity groups, with the gender gap widening with increasing age. Although elderly infected with COVID-19 are at an elevated risk of mortality, the test-based infection rates do not increase monotonically with age. The workforce population, especially, has a higher test-based infection rate than children, adolescents, and other elderly people in their 60-80. LatinX and African Americans have higher test-based infection rates than other race/ethnicity groups. The subgroups with the highest 5 test-based case fatality rates are all-male groups with race as African American, Asian, Multi-race, LatinX, and White, followed by African American females, indicating that African Americans are an especially vulnerable California subpopulation.

8.
JAMA ; 324(16): 1640-1650, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107944

RESUMO

Importance: Current guidelines recommend ticagrelor as the preferred P2Y12 platelet inhibitor for patients with acute coronary syndrome (ACS), primarily based on a single large randomized clinical trial. The benefits and risks associated with ticagrelor vs clopidogrel in routine practice merits attention. Objective: To determine the association of ticagrelor vs clopidogrel with ischemic and hemorrhagic events in patients undergoing percutaneous coronary intervention (PCI) for ACS in clinical practice. Design, Setting, and Participants: A retrospective cohort study of patients with ACS who underwent PCI and received ticagrelor or clopidogrel was conducted using 2 United States electronic health record-based databases and 1 nationwide South Korean database from November 2011 to March 2019. Patients were matched using a large-scale propensity score algorithm, and the date of final follow-up was March 2019. Exposures: Ticagrelor vs clopidogrel. Main Outcomes and Measures: The primary end point was net adverse clinical events (NACE) at 12 months, composed of ischemic events (recurrent myocardial infarction, revascularization, or ischemic stroke) and hemorrhagic events (hemorrhagic stroke or gastrointestinal bleeding). Secondary outcomes included NACE or mortality, all-cause mortality, ischemic events, hemorrhagic events, individual components of the primary outcome, and dyspnea at 12 months. The database-level hazard ratios (HRs) were pooled to calculate summary HRs by random-effects meta-analysis. Results: After propensity score matching among 31 290 propensity-matched pairs (median age group, 60-64 years; 29.3% women), 95.5% of patients took aspirin together with ticagrelor or clopidogrel. The 1-year risk of NACE was not significantly different between ticagrelor and clopidogrel (15.1% [3484/23 116 person-years] vs 14.6% [3290/22 587 person-years]; summary HR, 1.05 [95% CI, 1.00-1.10]; P = .06). There was also no significant difference in the risk of all-cause mortality (2.0% for ticagrelor vs 2.1% for clopidogrel; summary HR, 0.97 [95% CI, 0.81-1.16]; P = .74) or ischemic events (13.5% for ticagrelor vs 13.4% for clopidogrel; summary HR, 1.03 [95% CI, 0.98-1.08]; P = .32). The risks of hemorrhagic events (2.1% for ticagrelor vs 1.6% for clopidogrel; summary HR, 1.35 [95% CI, 1.13-1.61]; P = .001) and dyspnea (27.3% for ticagrelor vs 22.6% for clopidogrel; summary HR, 1.21 [95% CI, 1.17-1.26]; P < .001) were significantly higher in the ticagrelor group. Conclusions and Relevance: Among patients with ACS who underwent PCI in routine clinical practice, ticagrelor, compared with clopidogrel, was not associated with significant difference in the risk of NACE at 12 months. Because the possibility of unmeasured confounders cannot be excluded, further research is needed to determine whether ticagrelor is more effective than clopidogrel in this setting.


Assuntos
Síndrome Coronariana Aguda/cirurgia , Clopidogrel/efeitos adversos , Intervenção Coronária Percutânea , Antagonistas do Receptor Purinérgico P2Y/efeitos adversos , Ticagrelor/efeitos adversos , Síndrome Coronariana Aguda/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Aspirina/administração & dosagem , Estudos de Casos e Controles , Causas de Morte , Clopidogrel/administração & dosagem , Bases de Dados Factuais/estatística & dados numéricos , Dispneia/induzido quimicamente , Feminino , Hemorragia/induzido quimicamente , Humanos , Isquemia/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Metanálise em Rede , Pontuação de Propensão , Antagonistas do Receptor Purinérgico P2Y/administração & dosagem , Recidiva , República da Coreia , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Ticagrelor/administração & dosagem , Estados Unidos
10.
Nat Commun ; 11(1): 5110, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037213

RESUMO

Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeographic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including only sampling location. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Viagem , Teorema de Bayes , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Genoma Viral/genética , Humanos , Pandemias , Filogenia , Filogeografia , Pneumonia Viral/virologia , Viagem/estatística & dados numéricos
11.
PLoS Comput Biol ; 16(10): e1007774, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33044955

RESUMO

Coalescent theory combined with statistical modeling allows us to estimate effective population size fluctuations from molecular sequences of individuals sampled from a population of interest. When sequences are sampled serially through time and the distribution of the sampling times depends on the effective population size, explicit statistical modeling of sampling times improves population size estimation. Previous work assumed that the genealogy relating sampled sequences is known and modeled sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear function of the log-transformed effective population size. We improve this approach in two ways. First, we extend the method to allow for joint Bayesian estimation of the genealogy, effective population size trajectory, and other model parameters. Next, we improve the sampling time model by incorporating additional sources of information in the form of time-varying covariates. We validate our new modeling framework using a simulation study and apply our new methodology to analyses of population dynamics of seasonal influenza and to the recent Ebola virus outbreak in West Africa.

12.
Wellcome Open Res ; 5: 53, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923688

RESUMO

Nonparametric coalescent-based models are often employed to infer past population dynamics over time. Several of these models, such as the skyride and skygrid models, are equipped with a block-updating Markov chain Monte Carlo sampling scheme to efficiently estimate model parameters. The advent of powerful computational hardware along with the use of high-performance libraries for statistical phylogenetics has, however, made the development of alternative estimation methods feasible. We here present the implementation and performance assessment of a Hamiltonian Monte Carlo gradient-based sampler to infer the parameters of the skygrid model. The skygrid is a popular and flexible coalescent-based model for estimating population dynamics over time and is available in BEAST 1.10.5, a widely-used software package for Bayesian pylogenetic and phylodynamic analysis. Taking into account the increased computational cost of gradient evaluation, we report substantial increases in effective sample size per time unit compared to the established block-updating sampler. We expect gradient-based samplers to assume an increasingly important role for different classes of parameters typically estimated in Bayesian phylogenetic and phylodynamic analyses.

13.
Science ; 370(6516): 564-570, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32912998

RESUMO

Accurate understanding of the global spread of emerging viruses is critical for public health responses and for anticipating and preventing future outbreaks. Here we elucidate when, where, and how the earliest sustained severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission networks became established in Europe and North America. Our results suggest that rapid early interventions successfully prevented early introductions of the virus from taking hold in Germany and the United States. Other, later introductions of the virus from China to both Italy and Washington state, United States, founded the earliest sustained European and North America transmission networks. Our analyses demonstrate the effectiveness of public health measures in preventing onward transmission and show that intensive testing and contact tracing could have prevented SARS-CoV-2 outbreaks from becoming established in these regions.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Viagem Aérea , China/epidemiologia , Simulação por Computador , Busca de Comunicante , Infecções por Coronavirus/prevenção & controle , Evolução Molecular , Genoma Viral , Alemanha/epidemiologia , Humanos , Itália/epidemiologia , Programas de Rastreamento , Mutação , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Washington/epidemiologia
14.
J Am Med Inform Assoc ; 27(8): 1331-1337, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909033

RESUMO

Evidence derived from existing health-care data, such as administrative claims and electronic health records, can fill evidence gaps in medicine. However, many claim such data cannot be used to estimate causal treatment effects because of the potential for observational study bias; for example, due to residual confounding. Other concerns include P hacking and publication bias. In response, the Observational Health Data Sciences and Informatics international collaborative launched the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) research initiative. Its mission is to generate evidence on the effects of medical interventions using observational health-care databases while addressing the aforementioned concerns by following a recently proposed paradigm. We define 10 principles of LEGEND that enshrine this new paradigm, prescribing the generation and dissemination of evidence on many research questions at once; for example, comparing all treatments for a disease for many outcomes, thus preventing publication bias. These questions are answered using a prespecified and systematic approach, avoiding P hacking. Best-practice statistical methods address measured confounding, and control questions (research questions where the answer is known) quantify potential residual bias. Finally, the evidence is generated in a network of databases to assess consistency by sharing open-source analytics code to enhance transparency and reproducibility, but without sharing patient-level information. Here we detail the LEGEND principles and provide a generic overview of a LEGEND study. Our companion paper highlights an example study on the effects of hypertension treatments, and evaluates the internal and external validity of the evidence we generate.

15.
J Am Med Inform Assoc ; 27(8): 1268-1277, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827027

RESUMO

OBJECTIVES: To demonstrate the application of the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) principles described in our companion article to hypertension treatments and assess internal and external validity of the generated evidence. MATERIALS AND METHODS: LEGEND defines a process for high-quality observational research based on 10 guiding principles. We demonstrate how this process, here implemented through large-scale propensity score modeling, negative and positive control questions, empirical calibration, and full transparency, can be applied to compare antihypertensive drug therapies. We assess internal validity through covariate balance, confidence-interval coverage, between-database heterogeneity, and transitivity of results. We assess external validity through comparison to direct meta-analyses of randomized controlled trials (RCTs). RESULTS: From 21.6 million unique antihypertensive new users, we generate 6 076 775 effect size estimates for 699 872 research questions on 12 946 treatment comparisons. Through propensity score matching, we achieve balance on all baseline patient characteristics for 75% of estimates, observe 95.7% coverage in our effect-estimate 95% confidence intervals, find high between-database consistency, and achieve transitivity in 84.8% of triplet hypotheses. Compared with meta-analyses of RCTs, our results are consistent with 28 of 30 comparisons while providing narrower confidence intervals. CONCLUSION: We find that these LEGEND results show high internal validity and are congruent with meta-analyses of RCTs. For these reasons we believe that evidence generated by LEGEND is of high quality and can inform medical decision-making where evidence is currently lacking. Subsequent publications will explore the clinical interpretations of this evidence.

16.
Sci Rep ; 10(1): 11115, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632237

RESUMO

Alendronate and raloxifene are among the most popular anti-osteoporosis medications. However, there is a lack of head-to-head comparative effectiveness studies comparing the two treatments. We conducted a retrospective large-scale multicenter study encompassing over 300 million patients across nine databases encoded in the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The primary outcome was the incidence of osteoporotic hip fracture, while secondary outcomes were vertebral fracture, atypical femoral fracture (AFF), osteonecrosis of the jaw (ONJ), and esophageal cancer. We used propensity score trimming and stratification based on an expansive propensity score model with all pre-treatment patient characteritistcs. We accounted for unmeasured confounding using negative control outcomes to estimate and adjust for residual systematic bias in each data source. We identified 283,586 alendronate patients and 40,463 raloxifene patients. There were 7.48 hip fracture, 8.18 vertebral fracture, 1.14 AFF, 0.21 esophageal cancer and 0.09 ONJ events per 1,000 person-years in the alendronate cohort and 6.62, 7.36, 0.69, 0.22 and 0.06 events per 1,000 person-years, respectively, in the raloxifene cohort. Alendronate and raloxifene have a similar hip fracture risk (hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.94-1.13), but alendronate users are more likely to have vertebral fractures (HR 1.07, 95% CI 1.01-1.14). Alendronate has higher risk for AFF (HR 1.51, 95% CI 1.23-1.84) but similar risk for esophageal cancer (HR 0.95, 95% CI 0.53-1.70), and ONJ (HR 1.62, 95% CI 0.78-3.34). We demonstrated substantial control of measured confounding by propensity score adjustment, and minimal residual systematic bias through negative control experiments, lending credibility to our effect estimates. Raloxifene is as effective as alendronate and may remain an option in the prevention of osteoporotic fracture.

17.
Syst Biol ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687171

RESUMO

Relaxed random walk (RRW) models of trait evolution introduce branch-specific rate multipliers to modulate the variance of a standard Brownian diffusion process along a phylogeny and more accurately model overdispersed biological data. Increased taxonomic sampling challenges inference under RRWs as the number of unknown parameters grows with the number of taxa. To solve this problem, we present a scalable method to efficiently fit RRWs and infer this branch-specific variation in a Bayesian framework. We develop a Hamiltonian Monte Carlo (HMC) sampler to approximate the high-dimensional, correlated posterior that exploits a closed-form evaluation of the gradient of the trait data log-likelihood with respect to all branch-rate multipliers simultaneously. Our gradient calculation achieves computational complexity that scales only linearly with the number of taxa under study. We compare the efficiency of our HMC sampler to the previously standard univariable Metropolis-Hastings approach while studying the spatial emergence of the West Nile virus in North America in the early 2000s. Our method achieves at least a 6-fold speed-increase over the univariable approach. Additionally, we demonstrate the scalability of our method by applying the RRW to study the correlation between five mammalian life history traits in a phylogenetic tree with 3650 tips.

18.
bioRxiv ; 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32511416

RESUMO

Accurate understanding of the global spread of emerging viruses is critically important for public health response and for anticipating and preventing future outbreaks. Here, we elucidate when, where and how the earliest sustained SARS-CoV-2 transmission networks became established in Europe and the United States (US). Our results refute prior findings erroneously linking cases in January 2020 with outbreaks that occurred weeks later. Instead, rapid interventions successfully prevented onward transmission of those early cases in Germany and Washington State. Other, later introductions of the virus from China to both Italy and Washington State founded the earliest sustained European and US transmission networks. Our analyses reveal an extended period of missed opportunity when intensive testing and contact tracing could have prevented SARS-CoV-2 from becoming established in the US and Europe.

19.
bioRxiv ; 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596695

RESUMO

Spatiotemporal bias in genome sequence sampling can severely confound phylogeographic inference based on discrete trait ancestral reconstruction. This has impeded our ability to accurately track the emergence and spread of SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Despite the availability of staggering numbers of genomes on a global scale, evolutionary reconstructions of SARS-CoV-2 are hindered by the slow accumulation of sequence divergence over its relatively short transmission history. When confronted with these issues, incorporating additional contextual data may critically inform phylodynamic reconstructions. Here, we present a new approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2, while also including global air transportation data. We demonstrate that including travel history data for each SARS-CoV-2 genome yields more realistic reconstructions of virus spread, particularly when travelers from undersampled locations are included to mitigate sampling bias. We further explore the impact of sampling bias by incorporating unsampled sequences from undersampled locations in the analyses. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts. Although further research is needed to fully examine the performance of our new data integration approaches and to further improve them, they represent multiple new avenues for directly addressing the colossal issue of sample bias in phylogeographic inference.

20.
medRxiv ; 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32587982

RESUMO

INTRODUCTION: Angiotensin converting enzyme inhibitors (ACEs) and angiotensin receptor blockers (ARBs) could influence infection risk of coronavirus disease (COVID-19). Observational studies to date lack pre-specification, transparency, rigorous ascertainment adjustment and international generalizability, with contradictory results. METHODS: Using electronic health records from Spain (SIDIAP) and the United States (Columbia University Irving Medical Center and Department of Veterans Affairs), we conducted a systematic cohort study with prevalent ACE, ARB, calcium channel blocker (CCB) and thiazide diuretic (THZ) use to determine relative risk of COVID-19 diagnosis and related hospitalization outcomes. The study addressed confounding through large-scale propensity score adjustment and negative control experiments. RESULTS: Following over 1.1 million antihypertensive users identified between November 2019 and January 2020, we observed no significant difference in relative COVID-19 diagnosis risk comparing ACE/ARB vs CCB/THZ monotherapy (hazard ratio: 0.98; 95% CI 0.84 - 1.14), nor any difference for mono/combination use (1.01; 0.90 - 1.15). ACE alone and ARB alone similarly showed no relative risk difference when compared to CCB/THZ monotherapy or mono/combination use. Directly comparing ACE vs. ARB demonstrated a moderately lower risk with ACE, non-significant for monotherapy (0.85; 0.69 - 1.05) and marginally significant for mono/combination users (0.88; 0.79 - 0.99). We observed, however, no significant difference between drug- classes for COVID-19 hospitalization or pneumonia risk across all comparisons. CONCLUSION: There is no clinically significant increased risk of COVID-19 diagnosis or hospitalization with ACE or ARB use. Users should not discontinue or change their treatment to avoid COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA