RESUMO
The poor durability of Pt-based nanoparticles dispersed on carbon black is the challenge for the application of long-life polymer electrolyte fuel cells. Recent work suggests that Fe- and N-codoped carbon (Fe-N-C) might be a better support than conventional high-surface-area carbon. In this work, we find that the electrochemical surface area retention of Pt/Fe-N-C is much better than that of commercial Pt/C during potential cycling in both acidic and basic media. In situ inductively coupled plasma mass spectrometry studies indicate that the Pt dissolution rate of Pt/Fe-N-C is 3 times smaller than that of Pt/C during cycling. Density functional theory calculations further illustrate that the Fe-N-C substrate can provide strong and stable support to the Pt nanoparticles and alleviate the oxide formation by adjusting the electronic structure. The strong metal-substrate interaction, together with a lower metal dissolution rate and highly stable support, may be the reason for the significantly enhanced stability of Pt/Fe-N-C. This finding highlights the importance of carbon support selection to achieve a more durable Pt-based electrocatalyst for fuel cells.
RESUMO
The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.
Assuntos
Análise de Dados , Aprendizado de Máquina não Supervisionado , Radiografia , Software , Raios XRESUMO
One of the most challenging aspects of developing high-energy lithium-based batteries is the structural and (electro)chemical stability of Ni-rich active cathode materials at thermally-abused and prolonged cell cycling conditions. Here, we report in situ physicochemical characterizations to improve the fundamental understanding of the degradation mechanism of charged polycrystalline Ni-rich cathodes at elevated temperatures (e.g., ≥ 40 °C). Using multiple microscopy, scattering, thermal, and electrochemical probes, we decouple the major contributors for the thermal instability from intertwined factors. Our research work demonstrates that the grain microstructures play an essential role in the thermal stability of polycrystalline lithium-based positive battery electrodes. We also show that the oxygen release, a crucial process during battery thermal runaway, can be regulated by engineering grain arrangements. Furthermore, the grain arrangements can also modulate the macroscopic crystallographic transformation pattern and oxygen diffusion length in layered oxide cathode materials.
RESUMO
The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.
RESUMO
Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.
RESUMO
The commercialization of lithium-sulfur (Li-S) batteries is still hindered by the unsatisfactory cell performance under practical working conditions, which is mainly caused by the sluggish cathode redox kinetics, severe polysulfide shuttling, and poor Li stripping/plating reversibility. Herein, we report an effective strategy by combining Se-doped S hosted in an ordered macroporous framework with a highly fluorinated ether (HFE)-based electrolyte to simultaneously address the aforementioned issues in both cathode and anode. A reversible and stable high areal capacity of >5.4â mAh cm-2 with high Coulombic efficiency >99.2 % can be achieved under high areal Se/S loading (5.8â mg cm-2 ), while the underlying mechanism was further revealed through synchrotron X-ray probes and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The practical application potential was further evaluated at low (0 °C) and high (55 °C) temperatures under high areal Se/S loading (>5.0â mg cm-2 ) and thin Li metal (40â µm).
RESUMO
Layered transition-metal (TM) oxides are ideal hosts for Li+ charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na2/3 Ni1/3 Mn2/3 O2 cathode material is put forward to activate charge compensation through highly hybridized O2 p TM3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.
RESUMO
Improving electrolyte stability to suppress water electrolysis represents a basic principle for designing aqueous batteries. Herein, we investigate counterintuitive roles that water electrolysis plays in regulating intercalation chemistry. Using the NaxFe[Fe(CN)6]â¥NaTi2(PO4)3 (x < 1) aqueous battery as a platform, we report that high-voltage overcharging can serve as an electrochemical activation approach to achieving concurrent Na-ion intercalation and an electrolytic oxygen evolution reaction. When the cell capacity is intrinsically limited by deficient cyclable Na ions, the electrolytic water oxidation on the cathode allows for extra Na-ion intercalation from the electrolyte to the NaTi2(PO4)3 anode, leading to a major increase in cyclable Na ions and specific capacity. The parasitic oxygen generation and potential transition-metal dissolution, as proved by our synchrotron and imaging tools, can be significantly mitigated with a simple reassembling approach, which enables stable electrochemical performance and sheds light on manipulating ion intercalation and water electrolysis for battery fast charging and recycling.
RESUMO
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe_{4}. By combining transport, photoemission, diffraction, and x-ray absorption measurements, we observe that the hysteresis loop has a temperature width of more than 400 K, setting a record among crystalline solids. The transition has an origin distinct from known mechanisms, lying entirely within the incommensurate charge density wave (CDW) phase of EuTe_{4} with no change in the CDW modulation periodicity. We interpret the hysteresis as an unusual switching of the relative CDW phases in different layers, a phenomenon unique to quasi-2D compounds that is not present in either purely 2D or strongly coupled 3D systems. Our findings challenge the established theories on metastable states in density wave systems, pushing the boundary of understanding hysteretic transitions in a broken-symmetry state.
RESUMO
High-voltage operation is essential for the energy and power densities of battery cathode materials, but its stabilization remains a universal challenge. To date, the degradation origin has been mostly attributed to cycling-initiated structural deformation while the effect of native crystallographic defects induced during the sophisticated synthesis process has been significantly overlooked. Here, using in situ synchrotron X-ray probes and advanced transmission electron microscopy to probe the solid-state synthesis and charge/discharge process of sodium layered oxide cathodes, we reveal that quenching-induced native lattice strain plays an overwhelming role in the catastrophic capacity degradation of sodium layered cathodes, which runs counter to conventional perception-phase transition and cathode interfacial reactions. We observe that the spontaneous relaxation of native lattice strain is responsible for the structural earthquake (e.g., dislocation, stacking faults and fragmentation) of sodium layered cathodes during cycling, which is unexpectedly not regulated by the voltage window but is strongly coupled with charge/discharge temperature and rate. Our findings resolve the controversial understanding on the degradation origin of cathode materials and highlight the importance of eliminating intrinsic crystallographic defects to guarantee superior cycling stability at high voltages.
RESUMO
Conventional nanomaterials in electrochemical nonenzymatic sensing face huge challenge due to their complex size-, surface-, and composition-dependent catalytic properties and low active site density. In this work, we designed a single-atom Pt supported on Ni(OH)2 nanoplates/nitrogen-doped graphene (Pt1/Ni(OH)2/NG) as the first example for constructing a single-atom catalyst based electrochemical nonenzymatic glucose sensor. The resulting Pt1/Ni(OH)2/NG exhibited a low anode peak potential of 0.48 V and high sensitivity of 220.75 µA mM-1 cm-2 toward glucose, which are 45 mV lower and 12 times higher than those of Ni(OH)2, respectively. The catalyst also showed excellent selectivity for several important interferences, short response time of 4.6 s, and high stability over 4 weeks. Experimental and density functional theory (DFT) calculated results reveal that the improved performance of Pt1/Ni(OH)2/NG could be attributed to stronger binding strength of glucose on single-atom Pt active centers and their surrounding Ni atoms, combined with fast electron transfer ability by the adding of the highly conductive NG. This research sheds light on the applications of SACs in the field of electrochemical nonenzymatic sensing.
Assuntos
Grafite , Nanoestruturas , Eletrodos , Glucose/química , Grafite/química , Nanoestruturas/química , Níquel/químicaRESUMO
As a promising alternative to the market-leading lithium-ion batteries, low-cost sodium-ion batteries (SIBs) are attractive for applications such as large-scale electrical energy storage systems. The energy density, cycling life, and rate performance of SIBs are fundamentally dependent on dynamic physiochemical reactions, structural change, and morphological evolution. Therefore, it is essential to holistically understand SIBs reaction processes, degradation mechanisms, and thermal/mechanical behaviors in complex working environments. The recent developments of advanced in situ and operando characterization enable the establishment of the structure-processing-property-performance relationship in SIBs under operating conditions. This Review summarizes significant recent progress in SIBs exploiting in situ and operando techniques based on X-ray and electron analyses at different time and length scales. Through the combination of spectroscopy, imaging, and diffraction, local and global changes in SIBs can be elucidated for improving materials design. The fundamental principles and state-of-the-art capabilities of different techniques are presented, followed by elaborative discussions of major challenges and perspectives.
RESUMO
The surface of an electrocatalyst undergoes dynamic chemical and structural transformations under electrochemical operating conditions. There is a dynamic exchange of metal cations between the electrocatalyst and electrolyte. Understanding how iron in the electrolyte gets incorporated in the nickel hydroxide electrocatalyst is critical for pinpointing the roles of Fe during water oxidation. Here, we report that iron incorporation and oxygen evolution reaction (OER) are highly coupled, especially at high working potentials. The iron incorporation rate is much higher at OER potentials than that at the OER dormant state (low potentials). At OER potentials, iron incorporation favors electrochemically more reactive edge sites, as visualized by synchrotron X-ray fluorescence microscopy. Using X-ray absorption spectroscopy and density functional theory calculations, we show that Fe incorporation can suppress the oxidation of Ni and enhance the Ni reducibility, leading to improved OER catalytic activity. Our findings provide a holistic approach to understanding and tailoring Fe incorporation dynamics across the electrocatalyst-electrolyte interface, thus controlling catalytic processes.
RESUMO
We present a compact 3D printed x-ray emission spectrometer based on the von Hamos geometry that represents a significant upgrade to the existing von Hamos geometry-based miniature x-ray emission spectrometer (miniXES) [Mattern et al., Rev. Sci. Instrum. 83(2), 023901 (2012)]. The upgrades include the incorporation of a higher pixel density 500K detector for improved energy resolution and an enlarged sample area to accommodate a wider range of sample formats. The versatile spectrometer houses removable crystal holders that can be easily exchanged, as well as movable alignment eyelets that give flexibility in Bragg angle selection. Designed for ease of manufacture, all the components, except for the apertures, can be 3D printed and readily assembled. We describe its implementation in measurements of resonant and non-resonant Cu Kα and Kß x-ray emission and report the theoretical and measured energy resolution and collected solid angle of the emission.
RESUMO
ConspectusThe redox reaction pathway is crucial to the sustainable production of the fuels and chemicals required for a carbon-neutral society. Our society is becoming increasingly dependent on devices using batteries and electrolyzers, all of which rely on a series of redox reactions. The overall properties of oxide materials make them very well suited for such electrochemical and catalytic applications due to their associated cationic redox properties and the static site-adsorbate interactions. As these technologies have matured, it has become apparent that defect-driven redox reactions, defect-coupled diffusion, and structural transformations that are both time- and rate-dependent are also critical materials processes. This change in focus, considering not only redox properties but also more complex, dynamic behaviors, represents a new research frontier in the molecular sciences as they are strongly linked to device operation and degradation and lie at the heart of various phenomena that take place at electrochemical interfaces. Fundamental studies of the structural, electronic, and chemical transformation mechanisms are key to the advancement of materials and technological innovations that could be implemented in various electrochemical systems.In this Account, we focus on recent studies and advances in characterizing and understanding the dynamic redox evolution and structural transformations that take place in model perovskites and layered oxides under reactive conditions and correlate them with degradation mechanisms and operations in electrolyzers and batteries. We show that the dynamic evolution of oxygen vacancies and cationic migration in the surface or bulk occurs at the solid-liquid interface, using a combination of different synchrotron-based X-ray spectroscopies and scattering probes. Detailed redox-structure-reactivity correlation studies show how defects and diffusion processes can be tailored to drive various physical and chemical transformations in electrolyzers and batteries. We also highlight a strong correlation between oxygen redox reactivity and structural reorganization in both model thin films and particles, helping to bridge the gap between fundamental studies of the reaction mechanism and device applications. On the basis of these findings, we discuss strategies to probe and tune the redox reactivity and structural stability of the redox-active oxide interphase toward devising efficient pathways for energy and chemical harvesting.
RESUMO
Multiferroic oxide heterostructures consisting of ferromagnetic and ferroelectric components hold the promise for nonvolatile magnetic control via ferroelectric polarization, advantageous for the low-dissipation spintronics. Modern understanding of the magnetoelectric coupling in these systems involves structural, orbital, and magnetic reconstructions at interfaces. Previous works have long proposed polarization-dependent interfacial magnetic structures; however, direct evidence is still missing, which requires advanced characterization tools with near-atomic-scale spatial resolutions. Here, extensive polarized neutron reflectometry (PNR) studies have determined the magnetic depth profiles of PbZr0.2Ti0.8O3/La0.67Sr0.33MnO3 (PZT/LSMO) bilayers with opposite self-polarizations. When the LSMO is 2-3 nm thick, the bilayers show two magnetic transitions on cooling. However, temperature-dependent magnetization is different below the lower-temperature transition for opposite polarizations. PNR finds that the LSMO splits into two magnetic sublayers, but the inter-sublayer magnetic couplings are of opposite signs for the two polarizations. Near-edge X-ray absorption spectroscopy further shows contrasts in both the Mn valences and the Mn-O bond anisotropy between the two polarizations. This work completes the puzzle for the magnetoelectric coupling model at the PZT/LSMO interface, showing a synergic interplay among multiple degrees of freedom toward emergent functionalities at complex oxide interfaces.
RESUMO
Zinc-blende CdS nanoplatelets with atomically flat and very large {100} basal planes terminated solely by one type of element (either Cd or S atoms) are synthesized. Optical spectroscopy, X-ray diffraction, X-ray absorption, and transmission electron microscopy confirm that the surface structures of newly developed S-terminated CdS nanoplatelets are at least as well-defined as the original Cd-terminated nanoplatelets. Band gaps of the nanoplatelets are found to depend on not only the quantum-confined dimension (thickness) but also the nature of the surface termination. The facet structure dictates the packing of the ligands (carboxylate for Cd-terminated nanoplatelets and alkyl for S-terminated nanoplatelets), which causes a difference in the lattice strain and significantly affects the optical spectral width. Experimental and theoretical results reveal that engineering the exciton spatial distribution by the tailored synthesis of semiconductor nanocrystals with a precisely controlled surface structure is fully possible, which should open a new door for delivering the long-promised potential of semiconductor nanocrystals.
RESUMO
Although liquid mercury (Hg) has been known since antiquity, the formation of stable solid nano forms of Hg at room temperature has not been reported so far. Here, for the first time, we report a simple sonochemical route to obtain solid mercury nanoparticles, stabilized by reduced graphene oxide at ambient conditions. The as-formed solid Hg nanoparticles were found to exhibit remarkable rhombohedral morphology and crystallinity at room temperature. Extensive characterization using various physicochemical techniques revealed the unique properties of the solid nanoparticles of Hg compared to its bulk liquid metal phase. Furthermore, the solid nature of the Hg nanoparticles was studied electrochemically, revealing distinctive properties. We believe that solid Hg nanoparticles have the potential for important applications in the fields of electroanalytical chemistry and electrocatalysis.
RESUMO
Bioorthogonal catalysis mediated by transition metals has inspired a new subfield of artificial chemistry complementary to enzymatic reactions, enabling the selective labelling of biomolecules or in situ synthesis of bioactive agents via non-natural processes. However, the effective deployment of bioorthogonal catalysis in vivo remains challenging, mired by the safety concerns of metal toxicity or complicated procedures to administer catalysts. Here, we describe a bioorthogonal catalytic device comprising a microneedle array patch integrated with Pd nanoparticles deposited on TiO2 nanosheets. This device is robust and removable, and can mediate the local conversion of caged substrates into their active states in high-level living systems. In particular, we show that such a patch can promote the activation of a prodrug at subcutaneous tumour sites, restoring its parent drug's therapeutic anticancer properties. This in situ applied device potentiates local treatment efficacy and eliminates off-target prodrug activation and dose-dependent side effects in healthy organs or distant tissues.
Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas , Paládio , Pró-Fármacos , Titânio , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Catálise , Células Hep G2 , Humanos , Melanoma Experimental , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Paládio/química , Paládio/farmacocinética , Paládio/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Titânio/química , Titânio/farmacocinética , Titânio/farmacologiaRESUMO
Fe-N-C with atomically dispersed Fe single atoms is the most promising candidate to replace platinum for the oxygen reduction reaction (ORR) in fuel cells. However, the conventional synthesis procedures require quantities solvents and metal precursors, sluggish adsorption process, and tedious washing, resulting in limited metal doping and uneconomical for large-scale production. For the first time, Fe2O3 is adopted as the Fe precursor to derive abundant single Fe atoms dispersed on carbon surfaces. The Fe-N-C catalyst synthesized by this simple method shows an excellent ORR activity with half-wave potentials of 0.82 and 0.90 V in acidic and alkaline solutions, respectively. A single fuel cell with an optimized Fe-N-C cathode shows a high peak power density of 0.84 W cm-2. The solid-state transformation synthesis method developed in this study may shed light on mass production of single-atom-based catalysts.