Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 857
Filtrar
1.
IEEE Trans Vis Comput Graph ; 26(1): 579-589, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31425087

RESUMO

Production planning in the manufacturing industry is crucial for fully utilizing factory resources (e.g., machines, raw materials and workers) and reducing costs. With the advent of industry 4.0, plenty of data recording the status of factory resources have been collected and further involved in production planning, which brings an unprecedented opportunity to understand, evaluate and adjust complex production plans through a data-driven approach. However, developing a systematic analytics approach for production planning is challenging due to the large volume of production data, the complex dependency between products, and unexpected changes in the market and the plant. Previous studies only provide summarized results and fail to show details for comparative analysis of production plans. Besides, the rapid adjustment to the plan in the case of an unanticipated incident is also not supported. In this paper, we propose PlanningVis, a visual analytics system to support the exploration and comparison of production plans with three levels of details: a plan overview presenting the overall difference between plans, a product view visualizing various properties of individual products, and a production detail view displaying the product dependency and the daily production details in related factories. By integrating an automatic planning algorithm with interactive visual explorations, PlanningVis can facilitate the efficient optimization of daily production planning as well as support a quick response to unanticipated incidents in manufacturing. Two case studies with real-world data and carefully designed interviews with domain experts demonstrate the effectiveness and usability of PlanningVis.

2.
World Neurosurg ; 134: 120, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31698128

RESUMO

Failure of stent retrieval and periprocedural embolization of plaque are rare complications of carotid artery stenting, which need emergency surgical treatment. In Video 1, we demonstrate failed stent retrieval with acute middle cerebral artery occlusion that was treated with carotid endarterectomy and stent-assisted thrombectomy in a hybrid operating room. A 65-year-old man underwent carotid artery stenting for symptomatic left internal carotid artery stenosis with severe calcification. Immediately after placement of the open-cell carotid stent, left middle cerebral artery M1 segment occlusion was detected. A self-expanding retrievable intracranial stent was used for mechanical thrombectomy. However, the retrievable stent was blocked by the carotid stent and could not be retrieved. We attempted various ways to retrieve the device to avoid embolic complications, including neck rotation and neck compression, but they all failed. Therefore, we decided to perform surgical retrieval. Surgery was performed in a hybrid operating room under general anesthesia, and intraoperative neuromonitoring was used. The surgical field was deployed according to standard procedure. A longitudinal incision was then made through the adventitia on the anterolateral surface of the carotid artery. We pulled both stents out of the vessel and mobilized the plaque from the adventitia. The arteriotomy was closed with a double 6/0 monofilament suture. Angiogram was performed after vessel suturing to confirm there was not vessel wall damage or flow problems. After carotid endarterectomy, the stent-assisted thrombectomy was performed. Postoperative digital subtraction angiography confirmed the recanalization of the middle cerebral artery. The patient's neurologic function dramatically improved after hybrid treatment.

3.
Injury ; 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31771787

RESUMO

INTRODUCTION: Our aim was to observe the efficacy of the induced membrane technique in the treatment of extremity osteomyelitis and to analyse the causes of infection recurrence and its risk factors. METHODS: We retrospectively analysed 424 cases of extremity osteomyelitis treated with the induced membrane technique in our department between May 2013 and June 2017. Infection recurrence time, recurrence sites and other relevant information were collected, summarized, and analysed. RESULTS: A total of 424 patients were considered as "cured" of osteomyelitis after the first stage and the induced membrane technique was performed to rebuild the bone defects. After a mean follow-up of 31.6 (16-63) months, 52 patients had recurrence of infection, including 42 tibias and 10 femurs. The recurrence rate was 12.26%. Symptoms were relieved in 16 patients after intravenous antibiotic treatment. In the remaining 36 cases (8.49%), the infection was uncontrolled by intravenous antibiotics and surgical debridement was performed. The recurrence rate of infection of the tibia (16.22%) was higher than that of the femur (8.70%). The recurrence rate of post-traumatic osteomyelitis (14.66%) was significantly higher than that of hematogenous osteomyelitis (2.41%). Patients in whom Pseudomonas aeruginosa was isolated at the first stage had a recurrence rate of 28% (7/25), which was higher than that with the other isolated bacteria. Logistic regression analysis showed that repeated operations (≥3), post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection, with odds ratios (ORs) of 2.30, 5.53 and 5.28 respectively. CONCLUSIONS: The induced membrane technique is an effective method in the treatment of extremity osteomyelitis, although infection recurs in some cases. Repeated operations, post-traumatic osteomyelitis, and internal fixation at the first stage were risk factors for recurrence of infection. P. aeruginosa isolated at the first stage, tibia osteomyelitis, the presence of sinus, or flaps may also be associated with recurrence of infection.

4.
Stem Cell Res ; 41: 101605, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31706095

RESUMO

Adipose-derived mesenchymal stem cells (AMSCs) are a type of adult stem cell from the mesoderm with the capacity to migrate and differentiate into other cell lineages. As a morphogenetic state of stem cells, glial-derived neurotrophic factor (GDNF) has been found to promote cell proliferation and differentiation of stem cells. The aims of our study were to investigate the biological activity of AMSCs and whether the GDNF gene can enhance the anti-inflammatory properties of stem cells. In this study, stable proliferative GDNF-overexpressing AMSC lines were successfully established and the AMSCs/GDNF-AMSCs were cocultured with macrophages (Mφ) derived from THP-1 cells in a transwell system. The mRNA expression levels of tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-10 and IL-4 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, the expressions of CD163 and CD206, two markers of M2 macrophages, were detected with flow cytometric analysis. In animal experiments, AMSCs/GDNF-AMSCs (5 × 105) were administered to unilateral ureteral obstruction (UUO) nude mice for 3 or 7 days. The expression levels of cyclooxygenase-2 (COX-2), IL-6, transforming growth factor ß1 (TGF-ß1) and α-Smooth muscle actin (α-SMA) were determined by Western blotting. Renal pathological changes of all groups were observed by hematoxylin and eosin (HE) and Masson staining. In conclusion, in vitro cultured AMSCs induced a shift in macrophage phenotype from the inflammatory (M1) phenotype to the reparative (M2) phenotype. In the UUO model, AMSC treatment was conducive to the recovery of renal function and interstitial fibrosis. Therefore, we determined that AMSC therapy could promote the phenotypic transformation of macrophages and reduce the progression of renal fibrosis by suppressing inflammation. GDNF could enhance the anti-inflammatory effect of AMSCs.

5.
Cell Biol Int ; 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31642560

RESUMO

In this study, we determined whether multilineage-differentiating stress-enduring (Muse) cells exist in rat bone marrow and elucidated their effects on protection against the injury of intestinal epithelial cells associated with inflammation. Rat Muse cells were separated from bone marrow mesenchymal stem cells (BMMSCs) by trypsin-incubation stress. The group of cells maintained the characteristics of BMMSCs; however, there were high positive expression levels of stage-specific embryonic antigen-3 (SSEA-3; 75.6 ± 2.8%) and stage-specific embryonic antigen-1 (SSEA-1; 74.8 ± 3.1%), as well as specific antigens including Nanog, POU class 5 homeobox 1 (OCT 3/4), and SRY-box 2 (SOX 2). After inducing differentiation, α-fetoprotein (endodermal), α-smooth muscle actin and neurofilament medium polypeptide (ectodermal) were positive in Muse cells. Injuries of intestinal epithelial crypt cell-6 (IEC-6) and colorectal adenocarcinoma 2 (Caco-2) cells as models were induced by tumor necrosis factor-α stimulation in vitro. Muse cells exhibited significant protective effects on the proliferation and intestinal barrier structure, the underlying mechanisms of which were related to reduced levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ), and the restoration of transforming growth factor-ß (TGF-ß) and IL-10 in the inflammation microenvironment. In summary, there were minimal levels of pluripotent stem cells in rat bone marrow, which exhibit similar properties to human Muse cells. Rat Muse cells could provide protection against damage to intestinal epithelial cells depending on their anti-inflammatory and immune regulatory functionality. Their functional impact was more obvious than that of BMMSCs.

6.
Soft Matter ; 15(40): 8092-8101, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31583392

RESUMO

The scaffold is one of the most important components in tissue engineering. There are a lot of natural or synthetic materials applied for the fabrication of scaffolds. Among them, cellulose nanofibril (CNF) is an important natural polymer with characteristics of superior biocompatibility, notable nanostructure effect and excellent hydrophilia, which make it qualified for serving as a raw material of scaffolds. In this paper, polyethylene glycol diacrylate (PEGDA) was mixed with CNF at different content ratios, which were 0%, 0.35%, 0.7%, 1.05% and 1.4% (m/v). Furthermore, the visible light photoinitiator (eosin Y + TEA + NVP) was first added to this mixture solution to form a new kind of bio-resin. A two-step method including stereolithography and freeze-drying is put forward to fabricate a new aerogel-wet hydrogel scaffold. Scaffolds were fabricated by using a self-built stereolithography platform and the mechanical properties, printability and biocompatibility of the hydrogel scaffolds were investigated thoroughly. The original hydrogel scaffold was fabricated through stereolithography, where CNFs were applied to regulate the mechanical properties of the hydrogel and the printability of the bio-resin. After the freeze-drying process, the original hydrogel was transformed into the aerogel-wet hydrogel whose compressive modulus is reduced by 20%. Furthermore, the surface structure of the hydrogel scaffold is modified to provide a better environment for adhesion and growth of BMSc.

7.
Nat Commun ; 10(1): 4854, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649240

RESUMO

Nanocrystallization is a well-known strategy to dramatically tune the properties of materials; however, the grain-size effect of graphene at the nanometer scale remains unknown experimentally because of the lack of nanocrystalline samples. Here we report an ultrafast growth of graphene films within a few seconds by quenching a hot metal foil in liquid carbon source. Using Pt foil and ethanol as examples, four kinds of nanocrystalline graphene films with average grain size of ~3.6, 5.8, 8.0, and 10.3 nm are synthesized. It is found that the effect of grain boundary becomes more pronounced at the nanometer scale. In comparison with pristine graphene, the 3.6 nm-grained film retains high strength (101 GPa) and Young's modulus (576 GPa), whereas the electrical conductivity is declined by over 100 times, showing semiconducting behavior with a bandgap of ~50 meV. This liquid-phase precursor quenching method opens possibilities for ultrafast synthesis of typical graphene materials and other two-dimensional nanocrystalline materials.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31653046

RESUMO

Sediment cores were collected from four outlets in the Pearl River Estuary (Guangdong Province, China) and dated using the 210Pb method to investigate the pollution history of the area due to its relatively stable sedimentation status and hydrographic conditions in recent decades. The ages of the sediment cores were dated over 40 years (1968-2015). The concentrations at the four outlets ranged from 2.21 to 48.52 ng g-1 dw for nonylphenol and were non-detectable for 23.64 ng g-1 dw for bisphenol A (BPA), which exhibited a decreasing trend from north to south as well as seaward. The fluxes (2.84 to 112.91 ng cm-2 yr-1 and non-detectable to 59.33 ng cm-2 yr-1 for nonylphenol and bisphenol A, respectively) stabilized in the 1980s to 1990s due to the construction of sewage treatment systems. The fluxes increased again in the 21st century, which reached a peak ca. 2010 but declined in recent years due to the establishment of regulations and the decreasing number of industrial enterprises. Fluctuations in the pollution composition coincided with industrial development and governmental policies.

9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 31(9): 1137-1142, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31657340

RESUMO

OBJECTIVE: To investigate the protective effect of bone marrow mesenchymal stem cells (BMMSC) combined with normothermic mechanical perfusion (NMP) on biliary epithelial cells (BEC) in rats receiving donation after cardiac death (DCD) donor liver transplantation. METHODS: The BMMSC were isolated from male Sprague-Dawley (SD) rats aged 2-3 weeks and weighing 40-60 g, and then cultured, identified and expanded to the third generation in vitro. Male SD rats aged 6-8 weeks and weighing 200-220 g were divided into sham-operated group (Sham group), static cold storage (SCS group), simple NMP group (NMP group) and BMMSC combined with NMP group (BMMSC+NMP group) by random number table method with 44 rats in each group. The DCD donor liver transplantation models in rats were reproduced with 30-minute warm ischemic time. While the rats in Sham group merely received perihepatic ligaments-separation, which did not affect their liver blood supply, and then their incisions were sutured after 30 minutes. The DCD donor grafts in SCS group were preserved in the University of Wisconsin (UW) cold storage solution for 4 hours. While the DCD donor grafts in the NMP group and the BMMSC+NMP group were perfused with the DMEM/F12-based culture solution or combined with BMMSC for 4 hours through the established ex vivo NMP system. The orthotopic liver transplantation model was reproduced, and the survival rate of the recipients was observed at 0, 1, 7 and 14 days after liver transplantation. The biochemical liver function of rats in different groups was determined at each time point after operation. The morphological changes in bile ducts of liver grafts were observed by hematoxylin-eosin (HE) staining, and the expression of cytokeratin 19 (CK19) was determined qualitatively by immunohistochemistry and quantitatively by Western Blot after protein extraction from BEC in liver samples. RESULTS: The morphology, differentiation function and phenotypic identification of BMMSC confirmed that the stem cells used in this experiment were standard BMMSC. The survival rates of rats in the NMP group and the BMMSC+NMP group were significantly higher than that in the SCS group at 0, 1, 7 and 14 days after operation. The increase was more significant in the BMMSC+NMP group, with 100% on postoperative day (POD) 0, and the 14-day survival rate was still significantly higher than that in the SCS group and the NMP group [80.0% (16/20) vs. 20.0% (4/20), 70.0% (14/20), both P < 0.05]. As the time after liver transplantation prolonged, the liver function parameters of rats in the SCS group were deteriorated gradually, which reached the peak at 1-7 days after operation. The damage of biliary tissue increased gradually under the microscope, and the injury was most serious on POD 7 in the SCS group, showing a lot of balloon-like changes in hepatocytes, with obvious bile duct dilatation accompanied by large area inflammatory cell infiltration. Immunohistochemistry and Western Blot showed that the expression of CK19 in BEC cytoplasm was decreased gradually in the SCS group, reached the lowest on POD 7, and then gradually increased. The BMMSC+NMP group and the NMP group were significantly better than the SCS group in terms of liver function, pathological injury of biliary tract and CK19 expression in BEC, and the improvement was more significant in the BMMSC+NMP group. These results suggested that the protective effects of BMMSC combined with NMP on BEC was significantly better than that of the SCS and NMP. CONCLUSIONS: Preservation of rat DCD donor liver by BMMSC combined with NMP can reduce the BEC injury after liver transplantation significantly, thus improving both the prognosis and the survival rate after transplantation.


Assuntos
Transplante de Fígado , Células-Tronco Mesenquimais , Animais , Humanos , Doadores Vivos , Masculino , Preservação de Órgãos , Perfusão , Ratos , Ratos Sprague-Dawley
10.
Artigo em Inglês | MEDLINE | ID: mdl-31484106

RESUMO

Spatial presentations of chemical and mechanical information are key parameters for cell migration. However, previous theoretical and experimental studies focus on probing the mechanisms caused by a single type of stimulus, while ignoring the synergetic effects, especially for single cell migration during cell-to-cell interaction. Here we develop a chemomechanical model to assess the biochemical and biophysical modulators of single cell migration during cell-to-cell interaction. This model considers the stimulation of chemoattractant concentration gradient, influence of dynamic adhesion strength and relative motion between cells. The model is validated with single cell manipulation of leukemia cancer cell on stromal cell layer using optical tweezers. Both the modeling and experimental results demonstrate that cell migration velocity caused by chemotaxis can be biased by dynamic adhesion force, which is related to the retrograde flow of stromal cell layer. Besides, the biophysical modulators can influence the effect of drug treatment for specific signaling pathway. Our work provides a quantitative description of single cell migration in a complex environment that is close to realistic in vivo situation and is useful for further exploration of cell signaling pathway during cell-to-cell interactions for investigation of potential therapeutic strategy.

11.
J Cell Mol Med ; 23(11): 7222-7232, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513352

RESUMO

This study aimed to determine long non-coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) expression in pancreatic cancer and to explore the potential molecular actions of SNHG14 in mediating pancreatic cancer progression. Gene expression was detected by quantitative real-time PCR. Cell proliferation, growth and invasion were detected by respective CCK-8, colony formation, and transwell invasion assays. Protein levels were measured by Western blotting. Cell apoptosis and caspase-3 activity were detected by flow cytometry and caspase-3 activity assay. The link between miR-613 and its targets was evaluated by luciferase reporter assay. In vivo tumour growth was evaluated using a xenograft model of nude mice. SNHG14 expression was up-regulated in cancerous tissues from pancreatic cancer patients. High expression of SNHG14 was associated with poor tumour differentiation, advanced TNM stage and nodal metastasis. SNHG14 overexpression enhanced cell proliferative, growth and invasive abilities, and suppressed apoptotic rates and caspase-3 activity in pancreatic cancer cells, while SNHG14 knockdown exerted opposite effects. Mechanistic studies revealed that miR-613 was targeted by SNHG14, and Annexin A2 (ANXA2) was targeted and inversely regulated by miR-613 in pancreatic cancer cells. In vivo studies showed that SNHG14 knockdown attenuated tumour growth. MiR-613 was down-regulated and ANXA2 was up-regulated in the pancreatic cancer tissues, and SNHG14 expression levels were inversely correlated with miR-613 expression levels and positively correlated with the ANXA2 mRNA expression levels. Collectively, our results suggest that SNHG14 potentiates pancreatic cancer progression through modulation of annexin A2 expression via acting as a competing endogenous RNA for miR-613.

12.
J Org Chem ; 84(19): 12562-12572, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539475

RESUMO

Chiral imidodiphosphoric acids were employed as efficient catalysts in the enantioselective addition reaction of pyrrole and indoles to 3-vinylindoles. A series of optically active 1,1,1-triarylethmanes bearing quaternary stereocenters were synthesized in excellent yields (up to 99% yield) and enantioselectivities (up to 98% ee). Gram-scale reactions of 1i and 2a as well as 1o and 5a demonstrated the synthetic utility of this methodology. Control experiments showed that the formation of a double H-bond between the catalyst and substrates is necessary for an excellent outcome.

13.
Pharmacology ; 104(5-6): 368-376, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553994

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a high mortality and poor prognosis. Transforming growth factor (TGF)-ß plays crucial roles in the pathogenesis of IPF. To investigate the role of sodium arsenite (SA) on fibroblast differentiation and pulmonary fibrosis, we checked the effects of SA on TGF-ß-induced normal human lung fibroblasts (NHLFs) differentiation, and the anti-fibrotic effect of SA on bleomycin (BLM)-induced pulmonary fibrosis in mouse. SA treatment significantly inhibits α-smooth muscle actin and fibronectin (FN) expression in TGF-ß treated NHLFs; and SA also inhibits TGF-ß stimulated expression of NADPH oxidase 4 and accumulation of intracellular reactive oxygen species. TGF-ß-induced the phosphorylation of ERK and Smad3 were also blocked by SA. The administration of SA (IP) suppressed BLM-induced lung fibrosis characterized as the inhibition of collagen deposition, TGF-ß accumulation in bronchoalveolar lavage fluid, and the expression of FN and collagen 1a2 in lung tissue. This study revealed that SA inhibits TGF-ß-induced lung fibroblast differentiation and BLM-induced pulmonary fibrosis in mice, suggesting that SA could be a potential therapeutic approach to IPF.

14.
Chem Asian J ; 14(21): 3863-3867, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31503382

RESUMO

Molecular optical-dielectric duple bistable switches are photoelectric (dielectric and fluorescent) multifunctional materials that can simultaneously convert optical and electrical signals in one device for seamless integration. However, exploring optical-dielectric duple channels of dielectric and photoluminescence is still a bigger challenge than single dielectric or photoluminescence bistable ones, which are hardly reported but probably will be heavily researched owing to the new generation artificial intelligence development needs in the future. Herein, a new optical-dielectric duple bistable switches material, [(CH3 )3 NCH2 CH3 ]2 MnCl4 (I), was obtained by a simple method for volatilization of solvents. Variable temperature single crystal X-ray analysis indicates that material I has a reversible bistable structure (order-disorder structure phase transition) corresponding to switching "ON'' and "OFF''. Unlike the single dielectric bistable structures that were previously reported, material I also own bistable features in terms of fluorescence property. This material enriches the specific examples of photoelectric duple function switch materials and facilitates the development of required devices.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31484378

RESUMO

Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.

16.
ACS Nano ; 13(10): 10929-10938, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31550117

RESUMO

PtSe2, a layered two-dimensional transition-metal dichalcogenide (TMD), has drawn intensive attention owing to its layer-dependent band structure, high air stability, and spin-layer locking effect which can be used in various applications for next-generation optoelectronic and electronic devices or catalysis applications. However, synthesis of PtSe2 is highly challenging due to the low chemical reactivity of Pt sources. Here, we report the chemical vapor deposition of monolayer PtSe2 single crystals on MoSe2. The periodic Moiré patterns from the vertically stacked heterostructure (PtSe2/MoSe2) are clearly identified via annular dark-field scanning transmission electron microscopy. First-principles calculations show a type II band alignment and reveal interface states originating from the strong-weak interlayer coupling (SWIC) between PtSe2 and MoSe2 monolayers, which is supported by the electrostatic force microscopy imaging. Ultrafast hole transfer between PtSe2 and MoSe2 monolayers is observed in the PtSe2/MoSe2 heterostructure, matching well with the theoretical results. Our study will shed light on the synthesis of Pt-based TMD heterostructures and boost the realization of SWIC-based optoelectronic devices.

17.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L569-L577, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389735

RESUMO

Changes in reactive oxygen species and extracellular matrix seem to participate in pulmonary hypertension development. Because we recently reported evidence for chronic hypoxia decreasing expression of cartilage oligomeric matrix protein (COMP) and evidence for this controlling loss of pulmonary arterial smooth muscle bone morphogenetic protein receptor-2 (BMPR2) and contractile phenotype proteins, we examined if changes in superoxide metabolism could be an important factor in a bovine pulmonary artery (BPA), organoid cultured under hypoxia for 48 h model. Hypoxia (3% O2) caused a depletion of COMP in BPA, but not in bovine coronary arteries. Knockdown of COMP by small-interfering RNA (siRNA) increased BPA levels of mitochondrial and extra-mitochondrial superoxide detected by MitoSOX and dihydroethidium (DHE) HPLC products. COMP siRNA-treated BPA showed reduced levels of SOD2 and SOD3 and increased levels of NADPH oxidases NOX2 and NOX4. Hypoxia increased BPA levels of MitoSOX-detected superoxide and caused changes in NOX2 and SOD2 expression similar to COMP siRNA, and exogenous COMP (0.5 µM) prevented the effects of hypoxia. In the presence of COMP, BMPR2 siRNA-treated BPA showed increases in superoxide detected by MitoSOX and depletion of SOD2. Superoxide scavengers (0.5 µM TEMPO or mitoTEMPO) maintained the expression of contractile phenotype proteins calponin and SM22α decreased by 48 h hypoxia (1% O2). Adenoviral delivery of BMPR2 to rat pulmonary artery smooth muscle cells prevented the depletion of calponin and SM22α by COMP siRNA. Thus, COMP regulation of BMPR2 appears to have an important role in controlling hypoxia-elicited changes in BPA superoxide and its potential regulation of contractile phenotype proteins.

18.
Eur J Pharmacol ; 861: 172618, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31430456

RESUMO

Pinolenic acid (PLA), a natural compound isolated from pine nut oil, has been reported to exert bioactivity against lipid anabolism. Nonetheless, the underlying mechanisms still poorly elucidated. The aim of this study is to comprehensively demonstrate the effects of PLA on oleic acid (OA)-induced non-alcoholic fatty liver disease (NAFLD) and their relationship with the lipid metabolic regulation. The results demonstrated that treatment with PLA dramatically inhibited lipid accumulation, oxidative stress as well as inflammatory responses induced by oleic acid in HepG2 cells. PLA also obviously decreased the levels of cellular triglyceride (TG), total cholesterol (TC), malondialdehyde (MDA), reactive oxygen species (ROS) and nitric oxide (NO). As well as PLA stilled promoted the antioxidant enzymes activity including superoxide dismutase (SOD) and glutathione peroxidase (GPX). Furthermore, PLA could increase the expressions of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase1 (HO-1) to alleviate oxidative damage. It also could reduce lipogenesis-related transcription factors expression, such as sterol regulatory element-binding protein 1 (SREBP1c), fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1). PLA treatment resulted in increasing phosphorylation of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) expression. However, pretreatment with compound C (inhibitor of AMPK) inhibited the effect of PLA on promoting the expression of p-AMPK, SIRT1 and PPARα for lipolysis. Taken together, these results demonstrated that PLA possessed the potential to prevent lipid accumulation in OA-induced HepG2 cells via upregulating the AMPK/SIRT1 signaling pathway, which supported the development of new drug candidate against non-alcoholic steatohepatitis.

19.
Skeletal Radiol ; 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289901

RESUMO

OBJECTIVE: To compare the extent of cartilage deterioration in knees with prior meniscal resection related to trauma versus knees with resection related to degenerative disease, and to compare cartilage deterioration in knees with meniscal surgery to knees without meniscal surgery, controlling for prior knee trauma. MATERIALS AND METHODS: In this cross-sectional study, we assessed cartilage deterioration in right knees of Osteoarthritis Initiative participants: (i) with meniscal surgery due to injury (n = 79); (ii) matched control knees with a prior injury but without meniscal surgery (n = 79); (iii) with meniscal surgery but without preceding injury (n = 36); and (iv) matched control knees without meniscal surgery or prior knee injury (n = 36). Cartilage composition was measured using T2 measurements derived using semi-automatic cartilage segmentation of the right. Linear regression analysis was used to compare compartmental values of T2 between groups. RESULTS: Comparing the mean T2 values in surgical cases with and without injury our results did not show significant differences (group i vs. iii, p > 0.05). However, knees with previous meniscal surgery showed significantly (p < 0.001) higher mean T2 values across all compartments (i.e., global T2) when compared to those without meniscal surgery for both knees with a history of trauma (group i vs. ii) and knees without prior trauma (group iii vs. iv). Similar results were obtained when analyzing the compartments separately. CONCLUSIONS: Cartilage deterioration, assessed by T2, is similar in knees undergoing meniscal surgery after trauma and for degenerative conditions. Both groups demonstrated greater cartilage deterioration than nonsurgical knees, controlling for prior knee injury.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31340457

RESUMO

Enhalus acoroides (E. acoroides) is one of the most common species in seagrass meadows. Based on the application of allelochemicals from aquatic plants to inhibit harmful algal blooms (HABs), we used E. acoroides aqueous extract against harmful algae species Phaeocystis globosa (P. globosa). The results showed that E. acoroides aqueous extract could significantly inhibited the growth of P. globosa, decrease the chlorophyll-a content and photosynthetic efficiency (Fv/Fm) values of P. globosa, followed by vacuolization, plasmolysis, and the destruction of organelles. Twelve types of major chemical constituents were identified in E. acoroides aqueous extracts by ultraperformance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS), including six flavonoids, two homocyclic peptides, two long-chain aliphatic amides, one tannin, and one nitrogen heterocyclic compound. Flavonoids were the characteristic chemical constituents of E. acoroides aqueous extract. Furthermore, the antialgal activity of luteolin-7-O-glucuronide (68.125 µg/mL in 8 g/L E. acoroides aqueous extract) was assessed. The EC50-96 h value was 34.29 µg/mL. In conclusion, the results revealed that luteolin 7-O-glucuronide was one of the antialgal compounds of E. acoroides aqueous extract, with potential application as novel algaecide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA