Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Mar Biotechnol (NY) ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570690

RESUMO

In mammals, mature miR-122 is 22 nucleotides long and can be involved in regulating a variety of physiological and biological pathways. In this study, the expression profile and effects of grouper Epinephelus coioides miR-122 response to Singapore grouper iridovirus (SGIV) infection were investigated. The sequences of mature microRNAs (miRNAs) from different organisms are highly conserved, and miR-122 from E. coioides exhibits high similarity to that from mammals and other fish. The expression of miR-122 was up-regulated during SGIV infection. Up-regulation of miR-122 could significantly enhance the cytopathic effects (CPE) induced by SGIV, the transcription levels of viral genes (MCP, VP19, LITAF and ICP18), and viral replication; reduce the expression of inflammatory factors (TNF-a, IL-6, and IL-8), and the activity of AP-1 and NF-κB, and miR-122 can bind the target gene p38α MAPK to regulate the SGIV-induced cell apoptosis and the protease activity of caspase-3. The results indicated that SGIV infection can up-regulate the expression of E. coioides miR-122, and up-regulation of miR-122 can affect the activation of inflammatory factors, the activity of AP-1 and NF-κB, and cell apoptosis to regulate viral replication and proliferation.

2.
Eur J Med Chem ; 212: 113120, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422982

RESUMO

Lysine crotonylation plays vital roles in gene transcription and cellular metabolism. Nevertheless, methods for dissecting the molecular mechanisms of decrotonyaltion remains limited. So far, there is no single-step fluorescent method developed for enzymatic decrotonylation activity detection. The major difficulty is that the aliphatic crotonylated lysine doesn't allow π-conjugation to a fluorophore and decrotonylation can not modulate the electronic state directly. Herein, we have designed and synthesized two activity-based single-step fluorogenic probes KTcr-I and KTcr-II for detecting enzymatic decrotonylation activity. These two probes can be recognized by histone deacetylases and undergo intramolecular nucleophilic exchange reaction to generate fluorescence signal. Notably, peptide sequence-dependent effect was observed. KTcr-I can be recognized by Sirt2 more effectively, while KTcr-II with LGKcr peptide sequence preferentially reacted with HDAC3. Compared to other methods of studying enzymatic decrotonylation activity, our single-step fluorescent method has a number of advantages, such as facileness, high sensitivity, cheap facility and little material consumed. We envision that the probes developed in this study will provide useful tools to screen inhibitors which suppress the decrotonylation activity of HDACs. Such probes will be useful for further delineating the roles of decrotonylation enzyme and aid in biomarker identification and drug discovery.

3.
Dev Comp Immunol ; 119: 104013, 2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33465381

RESUMO

Programmed cell death 4 (PDCD4) in mammals, a gene closely associated with apoptosis, is involved in many biological processes, such as cell aging, differentiation, regulation of cell cycle, and inflammatory response. In this study, grouper Epinephelus coioides PDCD4, EcPDCD4-1 and EcPDCD4-2, were obtained. The open reading frame (ORF) of EcPDCD4-1 is 1413 bp encoding 470 amino acids with a molecular mass of 52.39 kDa and a theoretical pI of 5.33. The ORF of EcPDCD4-2 is 1410 bp encoding 469 amino acids with a molecular mass of 52.29 kDa and a theoretical pI of 5.29. Both EcPDCD4-1 and EcPDCD4-2 proteins contain two conserved MA3 domains, and their mRNA were detected in all eight tissues of E. coioides by quantitative real-time PCR (qRT-PCR) with the highest expression in liver. The expressions of two EcPDCD4s were significantly up-regulated after Singapore grouper iridovirus (SGIV) or Vibrio alginolyticus infection. In addition, over-expression of EcPDCD4-1 or EcPDCD4-2 can inhibit the activity of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), and regulate SGIV-induced apoptosis. The results demonstrated that EcPDCD4s might play important roles in E. coioides tissues during pathogen-caused inflammation.

4.
Dev Comp Immunol ; 119: 104020, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33476669

RESUMO

Mitogen-activated protein kinase 4 (MKK4), a member of the MAP kinase family, play important roles in response to many environmental and cellular stresses in mammals. In this study, three MKK4 subtypes, EcMKK4-1, EcMKK4-2 and EcMKK4-3, were obtained from grouper Epinephelus coioides. The open reading frame (ORF) of EcMKK4s are obtained and the EcMKK4s proteins contain highly conserved domains: a S_TKc domain, a canonical diphosphorylation group and two conserved MKKK ATP binding motifs, Asp-Phe-Gly (DFG) and Ala-Pro-Glu (APE). EcMKK4s could be found both in the cytoplasmic and nuclear. The EcMKK4s mRNA were detected in all E. coioides tissues examined with the different expression levels, and the expression were up-regulated during SGIV (Singapore grouper iridescent virus) or Vibrio alginolyticus infection. EcMKK4 could significantly reduce the activation of AP-1 reporter gene. The results suggested that EcMKK4s might play important roles in pathogen-caused inflammation.

5.
Dev Comp Immunol ; 114: 103801, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32739504

RESUMO

The nuclear factor-κB (NF-κB) family is evolutionary conserved and plays key roles in the regulation of numerous basic cellular processes. In this study, a sea cucumber Holothuria leucospilota NF-κB1 p105 named HLp105 was first obtained. The full-length cDNA of HLp105 is 6564 bp long, with a 219 bp 5' untranslated region (UTR), a 2979 bp 3' UTR, and a 3366 bp open reading frame (ORF) encoding for 1121 amino acids with a deduced molecular weight of 123.92 kDa and an estimated pI of 5.31. HLp105 protein contains the conserved domain RHD, IPT, ANK and DEATH. HLp105 mRNA can be detected in all tissues examined, with the highest level in the intestine, followed by the transverse vessel, rete mirabile, coelomocytes, respiratory tree, bolishiti, cuvierian tubules, body wall, oesophagus and muscle. Challenged by LPS or poly (I:C), the transcription level of HLp105 was apparently up-regulated in the tissues examined. Besides, Over-expression of HLp105 in HEK293T cells, the apoptosis was inhibited, and the cytokines IL-1ß and TNF-α were activated. The results are important for better understanding the function of NF-κB1 p105 in sea cucumber and reveal its involvement in immunoreaction.

6.
J Cell Physiol ; 236(2): 1391-1400, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32749682

RESUMO

The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC-related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor-ß). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.

7.
J Phys Chem A ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33264012

RESUMO

The N2H3 + NO2 reaction plays a key role during the early stages of hypergolic ignition between N2H4 and N2O4. Here for the first time, the reaction kinetics of N2H3 in excess NO2 was studied in 2.0 Torr of N2 and in the narrow temperature range 298-348 K in a pulsed photolysis flow-tube reactor coupled to a mass spectrometer. The temporal profile of the product, HONO, was determined by direct detection of the m/z +47 amu ion signal. For each chosen [NO2], the observed [HONO] trace was fitted to a biexponential kinetics expression, which yielded a value for the pseudo-first-order rate coefficient, k', for the reaction of N2H3 with NO2. The slope of the plot of k' versus [NO2] yielded a value for the observed bimolecular rate coefficient, kobs, which could be fitted to an Arrhenius expression of (2.36 ± 0.47) × 10-12 exp((520 ± 350)/T) cm3 molecule-1 s-1. The errors are 1σ and include estimated uncertainties in the NO2 concentration. The potential energy surface of N2H3 + NO2 was investigated by advanced ab initio quantum chemistry theories. It was found that the reaction occurs via a complex reaction mechanism, and all of the reaction channels have transition state energies below that of the entrance asymptote. The radical-radical addition forms the N2H3NO2 adducts, while roaming-mediated isomerization reactions yield the N2H3ONO isomers, which undergo rapid dissociation reactions to several sets of distinct products. The RRKM multiwell master equation simulations revealed that the major product channel involves the formation of trans-HONO and trans-N2H2 below 500 K and the formation of NO + NH2NHO above 500 K, which is nearly pressure independent. The pressure-dependent rate coefficients of the product channels were computed over a wide pressure-temperature range, which encompassed the experimental data.

8.
Chemosphere ; : 128692, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33228982

RESUMO

Recent water treatment plants require multi-process techniques to remove contaminants from aqua media. In this study, we investigate the novel, in situ coated sodium dodecylsulphate (SDS), on kegging Al30 nanocluster as a single water treatment alternative for the removal of phenolic contaminants and suspension. FTIR, TEM-EDX and Zeta potential analysis characterized the nanocluster decoration. The resulting property was examined by emission (λ-max) of the molecular probe, the online aggregate image of fluorescence microscopy, and mixing isochrone, fat-soluble dye solubilization. The coated media was examined as nearly resembling the hydrophobicity of 1-octanol. The elemental line scanning and mapping showed different morphologies of floc depending on the SDS concentration. The material was found to follow Brownian motion to enmesh suspended particles like a ladder, and served as entrapper for small organic contaminants by the sorbed SDS aggregate, based on their log KO/W. About 85% and ≥95% removal archived for contaminants with the least and highest KO/W value, respectively. The residual solutes in the supernatant were well decomposed by using a bacterial agent. One-step removal (less footprint) and ease of operation make this approach an environmentally compatible and cost-effective alternative for the large-scale treatment process.

9.
Environ Pollut ; : 115942, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33158612

RESUMO

In recent years, microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention because of the potential risks they pose to aquatic environments, but there are few studies on the difference of aggregation mechanism between MPs and NPs. In this study, 100 nm and 1 µm polystyrene plastics were selected as models to explore the aggregation mechanism of MPs/NPs under different aquatic environments. The influence of ion species and concentrations on the aggregation behaviors and kinetics were systematically investigated to predict the effects of water quality on the occurrence form of MPs and NPs based on DLVO theory and revised modified Smoluchowski theory. Results showed concentration, valence and hydrated ability of cations jointly affected the aggregation behavior of NPs. The critical coagulation concentration ratio of cations were consistent with Schulze-Hardy rules. But the different aggregation rate coefficients of same valent cations were ascribed to the structural layer force. Anion species played a role in the reaction-controlled regime by producing hydrogen ions to neutralize negative charges on NPs surfaces. Due to the strong Brownian motion and structural layer force, NPs would be stable in freshwater but preferentially aggregated when transport through brackish water, estuaries, eutrophication and high hardness areas and sea water, forming the accumulation hot spots of NPs in the sediment. While for MPs, physical process controlled the aggregation mechanism of them, leading to high stability in natural water and eventually transporting into marine environments. This study provided a theoretical foundation for assessing the transport, distribution, fate and ecological risks of MPs and NPs in realistic aquatic environments.

10.
Clin Epidemiol ; 12: 1183-1203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149695

RESUMO

Epidemiological findings on the effects of hormones on melanoma risk have been inconsistent. We therefore conducted a meta-analysis to examine the relationship between exogenous hormonal and reproductive factors and the risk of melanoma in women. We performed a search of PubMed, Web of Science, and the China National Knowledge Infrastructure (CNKI) database through April 2020 for relevant studies. Based on heterogeneity, we performed the meta-analysis of the risk estimates using either fixed effect or random effect models. We identified 38 studies that met the analytical criteria, involving 3,571,910 participants. The results showed that long-term use of oral contraceptives (OC) may increase the risk of melanoma in women (≥5 years [pooled RR=1.18; 95% CI: 1.07-1.31; I2=0%] and ≥10 years [pooled RR=1.25; 95% CI: 1.06-1.48; I2=0%]). Women who first used OC 15-19 years previously were more likely to develop melanoma (pooled RR=1.52; 95% CI: 1.03-2.24; I2=0%), while the years since the last use and the age at first use were not associated with the development of melanoma in women. Hormone replacement therapy (HRT) increased the incidence of melanoma in women (pooled RR=1.12, 95% CI: 1.02-1.24; I2=50%) and was especially associated with an increased risk of superficial spreading melanoma (SSM) (pooled RR=1.26; 95% CI: 1.17-1.37; I2=0%), and estrogen and estradiol may be the main active agents that contribute to the increased risk of melanoma, but these results may be due to a combination of sun exposure factors. With regard to reproductive factors, decreased parity and being aged ≥20 years at first birth may be associated with an increased risk of melanoma in females, while menopausal status and age at menarche are not associated with the incidence of melanoma in females. Further large-scale prospective studies are necessary to reveal new pathophysiological mechanisms and new therapeutic targets for cutaneous melanoma.

11.
J Pharm Anal ; 10(5): 490-497, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133733

RESUMO

Hydrogen peroxide (H2O2) plays a significant role in regulating a variety of biological processes. Dysregulation of H2O2 can lead to various diseases. Although numerous fluorescent imaging probes for H2O2 have been reported, the development of H2O2 ratiometric fluorescent probe with large Stokes shift remains rather limited. Such probes have shown distinct advantages, such as minimized interference from environment and improved signal-to noise ratio. In this work, we reported a new pyrene-based compound Py-VPB as H2O2 fluorescent probe in vitro. The probe demonstrated ratiometric detection behavior, large Stokes shift and large emission shift. In addition, the probe showed high sensitivity and selectivity towards H2O2 in vitro. Based on these excellent properties, we successfully applied Py-VPB to the visualization of exogenous and endogenous H2O2 in living cells. Cell imaging study also showed that our probe was localized in the mitochondria. We envision that the probe can provide a useful tool for unmasking the biological roles of mitochondrial H2O2 in living systems.

12.
Chem Commun (Camb) ; 56(87): 13323-13326, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33030154

RESUMO

Herein, a new fluorescent probe, AE-Phos, is reported for detecting the ALP activity with the combined advantages of aggregation-induced emission (AIE) and excited state intramolecular proton transfer (ESIPT). Further detailed fluorescence experiments demonstrated that AE-Phos exhibited excellent selectivity and sensitivity, a large Stokes shift, and a fast response towards ALP. Furthermore, AE-Phos was applied to imaging the ALP activity in different cell lines quantitatively.

13.
Chemistry ; 26(68): 16122-16128, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32864789

RESUMO

Fluorescent stapled peptides are important chemical tools for detecting intracellular distribution, protein-protein interactions, and localization of target proteins. These peptides are usually labeled with bulky sized fluorophores through reactive functional groups, which may alter the physical properties and biological activities of peptides. Herein, a unique strategy is developed for synthesizing new stapled peptides with built-in fluorescence. The stapled peptides were prepared through Rh-catalyzed C(sp2 )-H olefination in tryptophan (Trp) residues by using pyridine/pyrimidine as the directing groups under mild conditions. This method displays good regioselectivity and high efficiency. Furthermore, as a proof of concept for its biological applications, stapled peptides without additional fluorophore 9 a and 9 b were constructed for a cell imaging study. These peptides displayed strong binding affinity toward integrin αvß3 in A549 cells by cell imaging experiments. Notably they demonstrated even better anticancer activity than commercial antagonist cyclic (RGDfK). The method will provide robust tools for the peptide macrocyclization field.

14.
J Am Chem Soc ; 142(42): 18150-18159, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32991157

RESUMO

Mimicking nature's ability to orchestrate molecular self-assembly in living cells is important yet challenging. Molecular self-assembly has found wide applications in cellular activity control, drug delivery, biomarker imaging, etc. Nonetheless, examples of suborganelle-confined supramolecular self-assembly are quite rare and research in this area remains challenging. Herein, we have presented a new strategy to program supramolecular self-assembly specifically in mitochondria by leveraging on a unique enzyme SIRT5. SIRT5 is a mitochondria-localized enzyme belonging to a family of NAD+-dependent histone deacetylases. Accumulating studies suggest that SIRT5 is involved in regulating diverse biological processes, such as reactive oxygen defense, fatty acid metabolism, and apoptosis. In this study, we designed a novel class of succinylated peptide precursors that can be transformed into self-assembling building blocks through SIRT5 catalysis, leading to the formation of supramolecular nanofibers in vitro and in living cells. The increased hydrophobicity arising from self-assembly remarkably enhanced the fluorescence of nitrobenzoxadiazole (NBD) in the nanofibers. With this approach, we have enabled activity-based imaging of SIRT5 in living cells for the first time. Moreover, SIRT5-mediated peptide self-assembly was found to depolarize mitochondria membrane potential and promote ROS formation. Coincubation of the peptide with three different chemotherapeutic agents significantly boosted the anticancer activities of these drugs. Our work has thus illustrated a new way of mitochondria-confined peptide self-assembly for SIRT5 imaging and potential anticancer treatment.

15.
Cell Chem Biol ; 27(9): 1114-1116, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946757

RESUMO

In this issue of Cell Chemical Biology, Hong et al. (2020) use in situ chemoenzymatic labeling to discover that fucosylation of the Wnt co-receptor LRP6 induces its endocytosis and downregulates Wnt/ß-catenin signaling. Their findings reveal a glycosylation-based mechanism for regulating Wnt signaling that could be targeted in cancer.

16.
Acc Chem Res ; 53(10): 2106-2118, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32972128

RESUMO

ConspectusGold (Au), a transition metal with an atomic number of 79 in the periodic table of elements, was discovered in approximately 3000 B.C. Due to the ultrahigh chemical stability and brilliant golden color, Au had long been thought to be a most inert material and was widely utilized in art, jewelry, and finance. However, it has been found that Au becomes exceptionally active as a catalyst when its size shrinks to the nanometer scale. With continuous efforts toward the exploration of catalytic applications over the past decades, Au nanomaterials show critical importance in many catalytic processes. Besides catalysis, Au nanomaterials also possess other promising applications in plasmonics, sensing, biology and medicine, due to their unique localized surface plasmon resonance, intriguing biocompatibility, and superior stability. Unfortunately, the practical applications of Au nanomaterials could be limited because of the scarce reserves and high price of Au. Therefore, it is quite essential to further explore novel physicochemical properties and functions of Au nanomaterials so as to enhance their performance in different types of applications.Recently, phase engineering of nanomaterials (PEN), which involves the rearrangement of atoms in the unit cell, has emerged as a fantastic and effective strategy to adjust the intrinsic physicochemical properties of nanomaterials. In this Account, we give an overview of the recent progress on crystal phase control of Au nanomaterials using wet-chemical synthesis. Starting from a brief introduction of the research background, we first describe the development history of wet-chemical synthesis of Au nanomaterials and especially emphasize the key research findings. Subsequently, we introduce the typical Au nanomaterials with untraditional crystal phases and heterophases that have been observed, such as 2H, 4H, body-centered phases, and crystal-phase heterostructures. Importantly, crystal phase control of Au nanomaterials by wet-chemical synthesis is systematically described. After that, we highlight the importance of crystal phase control in Au nanomaterials by demonstrating the remarkable effect of crystal phases on their physicochemical properties (e.g., electronic and optical properties) and potential applications (e.g., catalysis). Finally, after a concise summary of recent advances in this emerging research field, some personal perspectives are provided on the challenges, opportunities, and research directions in the future.

17.
Chem Commun (Camb) ; 56(77): 11473-11476, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32856656

RESUMO

A versatile strategy for the intracellular delivery of functional proteins/antibodies was developed using N-terminal site-specific modification. Adopting orthogonal dual-labeling strategies, a cell-permeable RNase A prodrug was designed complementing N-terminal site-specific modification with lysine labeling. Upon successful cytosolic uptake, the prodrug showed reactive oxygen species (ROS)-dependent targeted cancer therapy.

18.
Lasers Med Sci ; 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827074

RESUMO

This study aimed to analyze the effectiveness and safety of ablative fractional carbon dioxide laser systems (CO2 AFL) combined with autologous platelet-rich plasma (PRP) in the treatment of acne scars through the retrieval and collection of related literature to further guide the treatment of acne scars. We searched Web of Science, PubMed, Embase, Wanfang Data, Chinese National Knowledge Infrastructure, and VIP Database. All randomized and nonrandomized controlled trials on CO2 AFL combined with PRP in the treatment of acne scars were included, and Revman5.3 systematic review software was used in the meta-analysis. Nine studies were included in this meta-analysis. The data analysis results showed that the CO2 AFL combined with PRP treatment group showed significantly better results than the pure CO2 AFL control group in terms of clinical improvement score, clinical improvement rate, patient satisfaction, and crusting period. The results of this meta-analysis showed that CO2 AFL combined with PRP in the treatment of acne scars is more effective and safer than CO2 AFL alone.

19.
BMC Cancer ; 20(1): 666, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680464

RESUMO

BACKGROUND: This study aimed to establish a novel nomogram prognostic model to predict death probability for non-small cell lung cancer (NSCLC) patients who received surgery.. METHODS: We collected data from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute in the United States. A nomogram prognostic model was constructed to predict mortality of NSCLC patients who received surgery. RESULTS: A total of 44,880 NSCLC patients who received surgery from 2004 to 2014 were included in this study. Gender, ethnicity, tumor anatomic sites, histologic subtype, tumor differentiation, clinical stage, tumor size, tumor extent, lymph node stage, examined lymph node, positive lymph node, type of surgery showed significant associations with lung cancer related death rate (P < 0.001). Patients who received chemotherapy and radiotherapy had significant higher lung cancer related death rate but were associated with significant lower non-cancer related mortality (P<0.001). A nomogram model was established based on multivariate models of training data set. In the validation cohort, the unadjusted C-index was 0.73 (95% CI, 0.72-0.74), 0.71 (95% CI, 0.66-0.75) and 0.69 (95% CI, 0.68-0.70) for lung cancer related death, other cancer related death and non-cancer related death. CONCLUSIONS: A prognostic nomogram model was constructed to give information about the risk of death for NSCLC patients who received surgery.

20.
Anal Chem ; 92(16): 11089-11094, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32602727

RESUMO

Our recent publication illustrates the critical role of phenylalanine-mediated aromatic-aromatic interactions in determining the assembly of peptidic ß-sheets. However, the effect of phenylalanine number on regulating the assembly efficacy of peptidic ß-sheets remains poorly understood. We herein evaluate the assembly efficacy of ß-sheets of a series of oligopeptides which contain 0, 1, 2, or 3 phenylalanine in their molecular backbones. In our assembly system, two phenylalanine (2F) is the minimum number for driving the assembly of ß-sheets of oligopeptides. Oligopeptides with three phenylalanine (3F) show significantly increased assembly efficacy of ß-sheets compared to that with 2F. These results suggest a positive correlation between the phenylalanine number and assembly efficacy of ß-sheets. By improving the assembly efficacy of ß-sheets, we further develop a highly sensitive HIV analytical system in which the specific binding of ß-sheets with Congo Red induces enhanced fluorescence. For HIV p24 detection, the 3F-based analytical system (0.61 pg/mL) shows a significantly lower limit of detection (LOD) than the 2F-based analytical system (2.44 pg/mL), both of which are more sensitive than commercial ELISA (5 pg/mL) used in the clinic. This work not only illustrates the effect of phenylalanine number on regulating the assembly efficacy of ß-sheets but also provides a guideline for the construction of a highly sensitive analytical system of disease diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA