Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 113(8): 1179-1189, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468221

RESUMO

A novel 1-aminocyclopropane-1-carboxylate deaminase producing bacterium, Gram- stain-negative, aerobic, motile, rod-shaped strain designated YM1C-6-2T was isolated from rhizosphere of maize grown in Northeast China. The 16S rRNA gene sequence analysis indicated that strain YM1C-6-2T belongs to the genus Mesorhizobium and is closely related to Mesorhizobium alhagi CCNWXJ12-2T and M. camelthorni CCNWXJ40-4T with sequence similarities of 98.4% and 97.9%, respectively. Multilocus sequence analysis of other housekeeping genes revealed that the new isolates YM1C-6-2T forms a phylogenetically group with some species in the genus Mesorhizobium. The genome size of strain YM1C-6-2T was 5.51 Mb, comprising 5378 predicted genes with a DNA G+C content of 64.5%. The average nucleotide identity and digital DNA-DNA hybridization comparisons between YM1C-6-2T and the most related type strains showed values below the accepted threshold for species discrimination. The major fatty acids of strain YM1C-6-2T were C19:0 cyclo ω8c (47.5%), summed feature 8 (C18:1ω7c and/or C18:1ω6c) (19.5%) and C16:0 (15.1%), which differed from the closely related reference strains in their relative abundance. The major polar lipids consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified aminophospholipid. The predominant ubiquinone was identified as Quinone 10. Phenotypic and biochemical analysis results indicated that strain YM1C-6-2T can be distinguished from closely related type strains. Based on the above results, strain YM1C-6-2T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium rhizophilum sp. nov. is proposed with YM1C-6-2T (= CGMCC 1.15487T = DSM 101712T) as the type strain.

2.
Math Biosci Eng ; 16(6): 6923-6933, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31698596

RESUMO

Objective: To investigate whether miR-125a-5p can inhibit the proliferation and invasion of breast cancer cells and induce apoptosis by targeting GAB2. Methods: qRT-PCR was used to detect the expression of miR-125a-5p in normal mammary epithelial cells and breast cancer cell lines; The miR-125a-5p overexpression plasmid was transiently transfected into MDA-MB-157 cells, and the proliferation, invasion and apoptosis of breast cancer cells were detected by CCK8 kit, Transwell chamber and flow cytometry, respectively; Gene silencing was used to knock down GAB2 gene in MDA-MB-157 cells, and the changes of proliferation, invasion, apoptosis and apoptosis-related proteins in breast cancer cells were detected by CCK8 kit, Transwell chamber, flow cytometry and western blot, respectively; The direct interaction between miR-125a-5p and GAB2 was detected by dual-luciferase reporter assay. The miR-125a-5p overexpression plasmid was transiently transfected into MDA-MB-157 cells, and the expression levels of GAB2 and apoptosis-related proteins were detected by western blot. Results: The expression of miR-125a-5p in breast cancer cell lines, MDA-MB-157 cells, MDA-MB-361 cells and MDA-MB-415 cells, was significantly lower than that in normal breast epithelial cells, MCF-10A cells; The proliferation and invasion ability of MDA-MB-157 cells transfected with miR-125a-5p were significantly inhibited, and the apoptosis rate was significantly increased; Since GAB2 knocked down, the proliferation and invasion ability of MDA-MB-157 cells were significantly inhibited, while the apoptosis rate was significantly increased, the Bax protein expression was significantly down-regulated, and the Bcl-2 protein expression was significantly up-regulated; The dual-luciferase reporter assay demonstrated that miR-125a-5p can specifically target GAB2. Transfected with miR-125a-5p, the GAB2 protein expression and Bax protein expression were significantly down-regulated, but the Bcl-2 protein expression was significantly up-regulated. Conclusion: miR-125a-5p inhibits the proliferation and invasion of breast cancer cells and induces their apoptosis by negatively regulating GAB2.

3.
Int J Syst Evol Microbiol ; 69(12): 3689-3695, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31647399

RESUMO

A novel Gram-stain-variable, endospore-forming, motile, rod-shaped, facultative aerobic bacterium, designated 7197T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) collected from Yakeshi County, Inner Mongolia, PR China. This isolate was found to have the highest 16S rRNA gene sequence similarity to Paenibacillussabinae T27T (98.0 %), followed by Paenibacillussophorae S27T (97.9 %) and Paenibacillusforsythiae T98T (97.7 %). To ascertain the genomic relatedness of this strain to its phylogenetic neighbours, its genome sequence was determined. The average nucleotide identity values of genome sequences between the novel isolate and the type strains of related species P. sabinae T27T, P. sophorae S27T and P. forsythiae T98T were 87.9 %, 85.8 and 83.9 %, respectively. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and one unidentified aminolipid. The major cellular fatty acids were anteiso-C15 : 0 (56.3 %), C16 : 0 (15.7 %) and iso-C15 : 0 (14.1 %).The genome size of strain 7197T was 5.21 Mb, comprising 4879 predicted genes with a DNA G+C content of 51.9 mol%. Menaquinone-7 was reported as the major respiratory quinone. The diamino acid in the cell-wall peptidoglycan was found to be meso-diaminopimelic acid. Based on phylogenetic, genomic, chemotaxonomic and phenotypic characteristics, strain 7197T was classified as a novel species within the genus Paenibacillus, for which the name Paenibacillus rhizophilus sp. nov. is proposed. The type strain of Paenibacillus rhizophilus is 7197T (=DSM 103168T=CGMCC 1.15699T).


Assuntos
Paenibacillus/classificação , Filogenia , Rizosfera , Microbiologia do Solo , Triticum/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Paenibacillus/isolamento & purificação , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
4.
Syst Appl Microbiol ; 42(4): 488-494, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31204142

RESUMO

Four endophytic bacterial strains were isolated from root, stem and leaf of maize planted in different regions of northern China. The four strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. Furthermore, the average nucleotide identity (ANI) values among them were higher than 95%, suggesting they all belong to one species. Based on 16S rRNA gene phylogeny, the four strains were clustered together with Pantoea rodasii LMG 26273T and Pantoea rwandensis LMG 26275T, but on a separate branch. Multilocus sequence analysis (MLSA) indicated that the four strains form a novel Pantoea species. Authenticity of the novel species was confirmed by ANI comparisons between strain 596T and its closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. The genome size of 596T was 5.1Mbp, comprising 4896 predicted genes with DNA G+C content of 57.8mol%. The respiratory quinone was ubiquinone-8 (Q-8) and the polar lipid profile consisted of phosphatidylethanolamin, diphosphatidylglycerol, phosphatidylglycerol, unidentified aminophospholipid and unidentified phospholipid. The major fatty acids of strain 596T were C16:0, summed feature 2 (C12:0 aldehyde), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, the four isolates are considered to represent a novel species of the genus Pantoea, for which the name Pantoea endophytica sp. nov., is proposed, with 596T (=DSM 100,785T=CGMCC 1.15280T) as type strain.


Assuntos
Pantoea/classificação , Pantoea/fisiologia , Filogenia , Zea mays/microbiologia , China , DNA Bacteriano/genética , Endófitos , Ácidos Graxos/química , Genes Bacterianos/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Pantoea/química , Pantoea/genética , Fenótipo , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Ubiquinona/química
5.
Biomed Res Int ; 2019: 6105865, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032353

RESUMO

The aims of the present work were to isolate and characterize fungal endophytic communities associated with healthy wheat (Triticum aestivum L.) plants, collected from the North China. Segregated endophytes were screened for their PGP traits, abiotic stresses (heavy metals, salinity, drought, and temperature), and antibiotic sensitivity. A total of 16 endophytic fungi were isolated using the culture-dependent approach from different tissue parts of wheat plants. Based upon their internal transcribed spacer (ITS) rDNA gene sequencing, 15 out of 16 isolates were selected for further analysis. In the contemporary investigation, a number of the tested endophytes exhibited fairly good 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) (0.03±0.011 to 1.43±0.01 µmol α-KB mg-1 protein hr-1), indole acetic acid (IAA) (1.125±0.04 to36.12±0.004µgml-1), and phosphate solubilizing index (PSI) (2.08±0.03to5.16±0.36) activities. More than 30% isolates gave positive result for siderophore and ammonia tests, whereas all exhibited catalase activity but only 2 (582PDA1 and 582PDA11) produced hydrogen cyanide. Trichoderma strains showed salt, heavy metals, and drought tolerance at high levels and also exhibited resistance to all the tested antibiotics. Strain 582PDA4 was found to be the most temperature (55°C) tolerant isolate. The findings of this study indicated that the microbial endophytes isolated from wheat plants possessing a crucial function to improve plant growth could be utilized as biofertilizers or bioagents to establish a sustainable crop production system.


Assuntos
Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Secas , Endófitos/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Metais Pesados/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Salinidade , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Temperatura , Triticum/microbiologia
6.
Cell Res ; 29(1): 23-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514900

RESUMO

While N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, is linked to cell differentiation and tissue development, the biological significance of m6A modification in mammalian glial development remains unknown. Here, we identify a novel m6A reader, Prrc2a (Proline rich coiled-coil 2 A), which controls oligodendrocyte specification and myelination. Nestin-Cre-mediated knockout of Prrc2a induces significant hypomyelination, decreased lifespan, as well as locomotive and cognitive defects in a mouse model. Further analyses reveal that Prrc2a is involved in oligodendrocyte progenitor cells (OPCs) proliferation and oligodendrocyte fate determination. Accordingly, oligodendroglial-lineage specific deletion of Prrc2a causes a similar phenotype of Nestin-Cre-mediated deletion. Combining transcriptome-wide RNA-seq, m6A-RIP-seq and Prrc2a RIP-seq analysis, we find that Olig2 is a critical downstream target gene of Prrc2a in oligodendrocyte development. Furthermore, Prrc2a stabilizes Olig2 mRNA through binding to a consensus GGACU motif in the Olig2 CDS (coding sequence) in an m6A-dependent manner. Interestingly, we also find that the m6A demethylase, Fto, erases the m6A modification of Olig2 mRNA and promotes its degradation. Together, our results indicate that Prrc2a plays an important role in oligodendrocyte specification through functioning as a novel m6A reader. These findings suggest a new avenue for the development of therapeutic strategies for hypomyelination-related neurological diseases.


Assuntos
Adenosina/análogos & derivados , Células-Tronco Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Adenosina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Neurogênese
7.
Syst Appl Microbiol ; 41(6): 604-610, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30220440

RESUMO

Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T=CGMCC 1.15991=DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T=CGMCC 1.16556=DSM 106792) are proposed.


Assuntos
Caulobacter/classificação , Filogenia , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Caulobacter/genética , Caulobacter/isolamento & purificação , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Graxos/química , Genoma Bacteriano , Fosfolipídeos/química , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
8.
Int J Syst Evol Microbiol ; 67(8): 2798-2803, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28820092

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped strain designated 166T was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, PR China. The 16S rRNA gene sequence analysis indicated that strain 166T belongs to the genus Rhizobium and is closely related to Rhizobium cellulosilyticum ALA10B2T and Rhizobium yantingense H66T with sequence similarities of 98.8 and 98.3 %, respectively. According to atpD and recA sequence analysis, the highest sequence similarity between strain 166T and R. cellulosilyticum ALA10B2T is 93.8 and 84.7 %, respectively. However, the new isolate exhibited relatively low levels of DNA-DNA relatedness with respect to R. cellulosilyticum DSM 18291T (20.8±2.3 %) and Rhizobium yantingense CCTCC AB 2014007T (47.2±1.4 %). The DNA G+C content of strain 166T was 59.8 mol%. The main polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, an unidentified aminophospholipid and an unidentified aminolipid. The major fatty acids of strain 166T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 166T from the type strains of closely related species, R. cellulosilyticum DSM 18291T and R. yantingense CCTCC AB 2014007T. Strain 166T represents a novel species within the genus Rhizobium, for which the name Rhizobium wenxiniae sp. nov. is proposed, with the type strain 166T (=CGMCC 1.15279T=DSM 100734T).


Assuntos
Filogenia , Raízes de Plantas/microbiologia , Rhizobium/classificação , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Pequim , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA
9.
Antonie Van Leeuwenhoek ; 110(5): 697-704, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28176143

RESUMO

A novel Gram-stain positive, aerobic, non-motile, non-spore-forming and rod-shaped strain designated 1204T was isolated from surface-sterilised stem tissue of maize planted in Fangshan District of Beijing, People's Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus Microbacterium. High levels of 16S rRNA gene sequence similarity were found between strain 1204T and Microbacterium enclense NIO-1002T (98.8%) and Microbacterium proteolyticum RZ36T (98.4%) respectively. However, the DNA-DNA hybridization values between strain 1204T and its closely related species M. proteolyticum DSM 27100T and M. enclense DSM 25125T were 53.9 ± 1.6 and 20.9 ± 1.5% respectively. The DNA G+C content of strain 1204T was determined to be 68.0 mol%. The major fatty acids were found to consist of anteiso-C15:0 (37.6%), iso-C16:0 (28.6%) and anteiso-C17:0 (16.6%). The predominant menaquinone was MK-11 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid and an unidentified lipid. The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 1204T from the closely related species in the genus Microbacterium. Thus, it was concluded that strain 1204T represents a novel species within the genus Microbacterium, for which the name Microbacterium zeae sp. nov. is proposed, with the type strain 1204T (= CGMCC 1.15289 = DSM 100750).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Zea mays/microbiologia , Actinobacteria/genética , Aerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/genética , Ácidos Graxos/análise , Glicolipídeos/análise , Humanos , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , Caules de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análise
10.
Cell Discov ; 3: 16054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28224045

RESUMO

DJ-1 protein is involved in multiple physiological processes, including Parkinson's disease. However, the role of DJ-1 in the metabolism is largely unknown. Here we found that DJ-1 maintained energy balance and glucose homeostasisvia regulating brown adipose tissue (BAT) activity. DJ-1-deficient mice reduced body mass, increased energy expenditure and improved insulin sensitivity. DJ-1 deletion also resisted high-fat-diet (HFD) induced obesity and insulin resistance. Accordingly, DJ-1 transgene triggered autonomous obesity and glucose intolerance. Further BAT transplantation experiments clarified DJ-1 regulates energy and glucose homeostasis by modulating BAT function. Mechanistically, we found that DJ-1 promoted PTEN proteasomal degradation via an E3 ligase, mind bomb-2 (Mib2), which led to Akt activation and inhibited FoxO1-dependent Ucp1 (Uncoupling protein-1) expression in BAT. Consistently, ablation of Akt1 mitigated the obesity and BAT dysfunction induced by DJ-1 transgene. These findings define a new biological role of DJ-1 protein in regulating BAT function, with an implication of the therapeutic target in the treatment of metabolic disorders.

11.
Diabetologia ; 60(5): 900-910, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28074253

RESUMO

AIMS/HYPOTHESIS: High-energy diets are among the main causes of the global epidemic of metabolic disorders, including obesity and type 2 diabetes. The mechanisms of high-energy-diet-induced metabolic disorders are complex and largely unknown. The non-receptor tyrosine kinase c-Abl plays an important role in adipogenesis in vitro but its role in vivo in the regulation of metabolism is still elusive. Hence, we sought to address the role of c-Abl in diet-induced obesity and obesity-associated insulin resistance. METHODS: The expression of c-Abl in different fat tissues from obese humans or mice fed a high-fat diet (HFD) were first analysed by western blotting and quantitative PCR. We employed conditional deletion of the c-Abl gene (also known as Abl1) in adipose tissue using Fabp4-Cre and 6-week-old mice were fed with either a chow diet (CD) or an HFD. Age-matched wild-type mice were treated with the c-Abl inhibitor nilotinib or with vehicle and exposed to either CD or HFD, followed by analysis of body mass, fat mass, glucose and insulin tolerance. Histological staining, ELISA and biochemical analysis were used to clarify details of changes in physiology and molecular signalling. RESULTS: c-Abl was highly expressed in subcutaneous fat from obese humans and HFD-induced obese mice. Conditional knockout of c-Abl in adipose tissue improved insulin sensitivity and mitigated HFD-induced body mass gain, hyperglycaemia and hyperinsulinaemia. Consistently, treatment with nilotinib significantly reduced fat mass and improved insulin sensitivity in HFD-fed mice. Further biochemical analyses suggested that c-Abl inhibition improved whole-body insulin sensitivity by reducing HFD-triggered insulin resistance and increasing adiponectin in subcutaneous fat. CONCLUSIONS/INTERPRETATION: Our findings define a new biological role for c-Abl in the regulation of diet-induced obesity through improving insulin sensitivity of subcutaneous fat. This suggests it may become a novel therapeutic target in the treatment of metabolic disorders.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Gordura Subcutânea/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obesidade/tratamento farmacológico , Obesidade/etiologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/deficiência , Proteínas Proto-Oncogênicas c-abl/genética , Pirimidinas/uso terapêutico , Gordura Subcutânea/efeitos dos fármacos
12.
Int J Syst Evol Microbiol ; 67(2): 231-236, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27902277

RESUMO

A novel Gram-staining-negative, aerobic, non-motile by gliding and rod-shaped strain, designated 22T, was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, PR China. The highest levels of 16S rRNA gene sequence similarity were found with respect to Pedobacter suwonensis 15-52T (97.5 %), Pedobacter terrae DS-57T (97.1 %) and Pedobacter alluvionis NWER-II11T (97.0 %). Phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain 22T is a member of the genus Pedobacter. The isolate exhibited relatively low levels of DNA-DNA relatedness with respect to P. suwonensis DSM 18130T (21.3±2.0 %), P. alluvionis DSM 19624T (38.1±1.8 %) and P. terrae DSM 17933T (17.1±1.4 %). The DNA G+C content was 41.2±0.5 mol%. The major isoprenoid quinone was menaquinone-7 (MK-7). The major component in the polyamine pattern was sym-homospermidine. The major polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids and one unidentified lipid. The major fatty acids were identified as iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 22T from the related species with high 16S rRNA gene sequence similarity, P. suwonensis DSM 18130T, P. alluvionis DSM 19624T and P. terrae DSM 17933T. Strain 22T represents a novel species within the genus Pedobacter, for which the name Pedobacter zeae sp. nov. is proposed, with the type strain 22T (=CGMCC 1.15287T=DSM 100774T).


Assuntos
Pedobacter/classificação , Filogenia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Pequim , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Graxos/química , Pedobacter/genética , Pedobacter/isolamento & purificação , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Int J Syst Evol Microbiol ; 66(12): 5281-5287, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27652598

RESUMO

A Gram-staining-positive, moderately halophilic, aerobic, endospore-forming, rod-shaped bacterial strain, designated WD4L-1T was isolated from surface-sterilized stem tissue of a poplar tree planted in the Wudalianchi National Geopark of Heilongjiang province, PR China. This novel isolate grew in the presence of 0-15 % (w/v) NaCl, at pH 6.0-9.0 and 15-50 °C; optimum growth was observed with 7-8 % (w/v) NaCl, at pH 7.0 and 30 °C. The 16S rRNA gene sequence analysis indicated that the strain WD4L-1T belonged to the genus Lentibacillus, and was most closely related to Lentibacillus garicola SL-MJ1T with a sequence similarity of 96.1 %. The DNA G+C content of strain WD4L-1T was determined to be 36.9 mol%. The respiratory quinone was identified as menaquinone-7 (MK-7) and the major lipids were diphosphatidylglycerol and phosphatidylglycerol and one unidentified phospholipid. The major fatty acids of strain WD4L-1T were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. The results of the physiological and biochemical tests and the minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain WD4L-1T from the closely related Lentibacillus garicola JCM 30131T. Thus, strain WD4L-1T represents a novel species of the genus Lentibacillus, for which the name Lentibacillus populi sp. nov. is proposed. The type strain is WD4L-1T (=CGMCC 1.15454T=DSM 101738T). An emended description of the genus Lentibacillus is also provided.


Assuntos
Bacillaceae/classificação , Filogenia , Populus/microbiologia , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Árvores/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 66(10): 4022-4026, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27412002

RESUMO

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain, designated 65T, was isolated from surface-sterilized root tissue of maize, collected from Fangshan District of Beijing, People's Republic of China, and was subjected to a taxonomic study by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 65T belonged to the genus Dyadobacter and had highest 16S rRNA gene sequence similarity to Dyadobacter jiangsuensis CGMCC 1.12969T (99.1 %), Dyadobacter beijingensis CGMCC 1.6375T (98.8 %), Dyadobacter fermentans DSM 18053T (98.6 %) and Dyadobacter soli KCTC 22481T (98.6 %). However, the new isolate exhibited relatively low levels of DNA-DNA relatedness with respect to D. jiangsuensis CGMCC 1.12969T (18.2±1.3 %), D. beijingensis CGMCC 1.6375T (14.2±2.0 %), D. fermentans DSM 18053T (14.1±2.0 %) and D. soli KCTC 22481T (13.8±0.6 %). The predominant respiratory quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1ω5c, iso-C15 : 0 3-OH, C16 : 0 3-OH and C16 : 0. The polar lipid profile of strain 65T revealed the presence of phosphatidylethanolamine, four aminolipids and two unidentified phospholipids. The DNA G+C content was 46.6 mol%. The results of physiological and biochemical tests and the differences in the fatty acid profiles allowed the clear phenotypic differentiation of strain 65T from closely related species of the genus Dyadobacter. Strain 65T thus represents a novel species within the genus Dyadobacter, for which the name Dyadobacterendophyticus sp. nov. is proposed. The type strain is 65T (=CGMCC 1.15288T=DSM 100786T).


Assuntos
Cytophagaceae/classificação , Filogenia , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Pequim , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Int J Syst Evol Microbiol ; 66(9): 3755-3760, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27374123

RESUMO

A novel Gram-staining-negative, aerobic and rod-shaped strain designated 541T was isolated from surface-sterilized root tissue of maize, collected from the Fangshan District of Beijing, People's Republic of China, and was subjected to a taxonomic study using a polyphasic approach. According to a phylogenetic tree based on 16S rRNA gene sequences, strain 541T represented a member of the genus Sphingomonas and clustered with Sphingomonas sanxanigenens DSM 19645T, with which it shared the highest 16S rRNA gene sequence similarity (98.8 %). The predominant respiratory quinone was ubiquinone-10 (Q-10), the major polyamine was sym-homospermidine and the major cellular fatty acids were C18 : 1ω7c (50.9 %), C16 : 0 (22.0 %) and C14 : 0 2-OH (11.4 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The DNA G+C content was 64.7 mol%. DNA-DNA relatedness between strain 541T and its closest phylogenetic relative Sphingomonas sanxanigenens DSM 19645T was 50.8 %. The results of physiological and biochemical tests and the differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 541T from closely related species of the genus Sphingomonas. Strain 541T represents a novel species within the genus Sphingomonas, for which the nameSphingomonas zeicaulis sp. nov. is proposed, with the type strain 541T (=CGMCC 1.15008T=DSM 100587T).


Assuntos
Filogenia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Sphingomonas/classificação , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Pequim , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/química , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Compostos de Espiro , Ubiquinona/química
16.
Int J Syst Evol Microbiol ; 66(7): 2730-2734, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27118116

RESUMO

A novel Gram-stain-negative, aerobic, motile by gliding and filamentous strain, designated 772T,was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, China. 16S rRNA gene sequence analysis indicated that strain 772T was closely related to Filimonas endophytica SR2-06T andFilimonas lacunae YT21T of the family Chitinophagaceae with sequence similarities of 99.0 and 96.9 %, respectively. However, the new isolate exhibited relatively low levels of DNA-DNA relatedness with respect to Filimonas. endophytica KCTC 42060T (18.7±1.8 %) and Filimonas. lacunae DSM 21054T (17.9±2.0%). The DNA G+C content of strain 772T was 44.9 mol%. The respiratory quinone was menaquinone-7 and the polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and one unidentified lipid. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed the clear phenotypic differentiation of strain 772T from the closely related species Filimonas. endophytica andF. lacunae. Strain 772T thus represents a novel species within the genus Filimonas, for which the name Filimonas zeae sp. nov. is proposed. The type strain is 772T (=CGMCC 1.15290T=DSM 100760T).


Assuntos
Bacteroidetes/classificação , Filogenia , Raízes de Plantas/microbiologia , Zea mays/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , Pequim , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Int J Syst Evol Microbiol ; 66(2): 807-811, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612690

RESUMO

A novel Gram-stain-positive, aerobic, endospore-forming, and rod-shaped strain designated 694T was isolated from surface-sterilized root tissue of a maize planted in the Fangshan District of Beijing, People's Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus Paenibacillus. High levels of 16S rRNA gene sequence similarity were found between strain 694T and Paenibacillus xinjiangensis DSM 30034T (98.5 %) and Paenibacillus glycanilyticus (98.1 %), respectively. However, the DNA-DNA hybridization values between strain 694T and its close relatives P. xinjiangensis 16970T and Paenibacillus algorifonticola CGMCC 1.10223T were 30.0 % and 36.7 % respectively. The DNA G+C content of strain 694T was determined to be 46.9 mol%. The predominant respiratory quinone was identified as menaquinone-7 and the polar lipid profile was found to be composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were found to be anteiso-C15 : 0 (42.1 %), iso-C15 : 0 (18.4 %), iso-C16 : 0 (11.2 %) and C16 : 0 (12.1 %). The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 694T from the closely related species in the genus Paenibacillus. Strain 694T is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus radicis sp. nov. is proposed, with the type strain 694T ( = CGMCC 1.15286T = DSM 100762T).

18.
Ear Nose Throat J ; 94(9): E10-3, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401673

RESUMO

Schwannomas of the cervical esophagus are extremely rare, as fewer than a dozen reports have been published in the literature. Therefore, their clinical characteristics and management have not been definitively elucidated. We report 2 cases of cervical esophageal schwannoma (CES) in which the patients-a 52-year-old woman and a 53-year-old woman-were initially misdiagnosed clinically. The correct diagnosis was later established on the basis of contrast-enhanced computed tomography (CT) and intraoperative frozen-section analysis. In both cases, the tumor was enucleated, and the esophagus was closed by primary intention. Both patients resumed an oral diet 2 weeks postoperatively. Follow-up detected no evidence of recurrence. Our review of the literature revealed that CES is a benign mesenchymal tumor that can be misdiagnosed both clinically and pathologically. Preoperative contrast-enhanced CT and intraoperative frozen-section analysis help in the planning for conservative enucleation, which precludes the need for esophageal resection and its associated morbidity.


Assuntos
Neoplasias Esofágicas/diagnóstico , Neurilemoma/diagnóstico , Diagnóstico Diferencial , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Esofagoscopia , Feminino , Secções Congeladas , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Neurilemoma/patologia , Neurilemoma/cirurgia , Fotomicrografia , Tomografia Computadorizada por Raios X
19.
Antonie Van Leeuwenhoek ; 108(5): 1015-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26346477

RESUMO

A novel Gram-positive, aerobic, motile, endospore-forming, rod-shaped bacterium, designated 373(T) was isolated from surface-sterilised root tissue of a maize planted in Fangshan District of Beijing, Peopole's Republic of China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belongs to the genus Paenibacillus. The highest 16S rRNA gene sequence similarity was found between strain 373(T) and Paenibacillus hunanensis (98.1%), meanwhile the 16S rRNA gene sequence similarity between strain 373(T) and the type strains of other recognised members of the genus Paenibacillus were all below 95.6%. However, the DNA-DNA hybridization values between strain 373(T) and the type strain P. hunanensis DSM 22170(T) was 30.2%. The DNA G+C content of strain 373(T) was determined to be 46.0 mol%. The predominant respiratory quinone was identified as menaquinone-7 and the polar lipid profile was found to be composed of the major lipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were found to consist of anteiso-C15: 0 (59.6%), anteiso-C17: 0 (12.8%) and C16: 0 (6.7%). The results of physiological and biochemical tests and minor differences in the fatty acid profiles allowed a clear phenotypic differentiation of strain 373(T) from the closely related species in this genus Paenibacillus. Strain 373(T) is concluded to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus wenxiniae sp. nov. is proposed, with the type strain 373(T) (= CGMCC 1.15007 (T) = DSM100576 ).


Assuntos
Proteínas de Bactérias/genética , Endófitos/genética , Oxirredutases/genética , Paenibacillus/genética , Zea mays/microbiologia , Composição de Bases , Código de Barras de DNA Taxonômico , DNA Bacteriano , Endófitos/química , Endófitos/classificação , Paenibacillus/química , Paenibacillus/classificação , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
20.
Int J Syst Evol Microbiol ; 65(11): 3900-3904, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875916

RESUMO

A novel Gram-stain-negative, aerobic, rod-shaped bacterium, designated strain 522T, was isolated from surface-sterilized root tissue of maize planted in Fangshan District of Beijing, China. A polyphasic taxonomic study was performed on the new isolate. On the basis of 16S rRNA gene sequence similarity studies, this isolate belonged to the genus Flavobacterium and showed less than 93.9 % similarity to the type strains of all recognized species of the genus Flavobacterium. The predominant respiratory quinone was menaquinone-6 and the polar lipid profile was composed of the major lipids phosphatidylethanolamine, phosphatidylserine and two unidentified amino lipids. The major fatty acids were C15 : 0, iso-C15 : 0, iso-C15 : 1 G and iso-C16 : 0.The G+C content of the DNA was 37.7 mol%. The results of physiological and biochemical tests and the differences in fatty acid profiles allowed the clear phenotypic differentiation of strain 522T from closely related species of the genus Flavobacterium. Strain 522T therefore represents a novel species within the genus Flavobacterium, for which the name Flavobacterium endophyticum sp. nov. is proposed. The type strain is 522T ( = ACCC 19708T = DSM 29537T).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA