Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 10(15): 4203-4208, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291727


van der Waals (vdW) epitaxy offers a promising strategy without lattice and processing constraints to prepare atomically clean and electronically sharp interfaces for fundamental studies and electronic device demonstrations. Herein, PbI2 was thermally deposited at high-vacuum conditions onto CVD-grown monolayer MoS2 flakes in a vdW epitaxial manner to form 3D-2D heterojunctions, which are promising for vdW epitaxial growth of perovskite films. X-ray diffraction, X-ray photoemission spectroscopy, Raman, and atomic force microscopy measurements reveal the structural properties of the high-quality heterojunctions. Photoluminescence (PL) measurements reveal that the PL emissions from the bottom MoS2 flakes are greatly quenched compared to their as-grown counterparts, which can be ascribed to the band alignment-induced distinct interfacial charge-transfer behaviors. Strong interlayer excitons can be detected at the PbI2/MoS2 interface, indicating an effective type II band alignment, which can be further confirmed by ultraviolet photoemission spectroscopy measurements. The results provide a new material platform for the application of the vdW heterojunctions in electronic and optoelectronic devices.

Nanoscale ; 11(28): 13469-13476, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31287485


The realization of p-n homojunctions, which can be achieved via spatially controlled carrier-type modulation, remains a challenge for two-dimensional transition metal dichalcogenides. Here, we report an effective method to tune intrinsic n-type few-layer MoSe2 to p-type through controlling precisely the ultraviolet-ozone treatment time, which can be attributed to the surface charge transfer from the underlying MoSe2 to MoOx (x < 3). The resulting hole mobility and concentration are ∼20.1 cm2 V-1 s-1 and ∼1.9 × 1012 cm-2, respectively, and the on-off ratio is ∼105, which are comparable to the values of pristine n-type MoSe2. Moreover, the lateral p-n homojunction prepared by partially treating MoSe2 displays a high rectification ratio of 2.4 × 104, an ideality factor of 1.1, and a high photoresponsivity of 0.23 A W-1 to the 633 nm laser at Vd = 0 V and Vg = 0 V due to the built-in potential in the p-n homojunction area. Our findings ensure the MoSe2 p-n diode as a promising candidate for future low-power operating photodevices.