Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 21(1): 411, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552744

RESUMO

BACKGROUND: Fulvic acid (FA) is a kind of plant growth regulator, which can promote plant growth, play an important role in fighting against drought, improve plant stress resistance, increase production and improve quality. However, the function of FA in tea plants during drought stress remain largely unknown. RESULTS: Here, we examined the effects of 0.1 g/L FA on genes and metabolites in tea plants at different periods of drought stress using transcriptomics and metabolomics profiles. Totally, 30,702 genes and 892 metabolites were identified. Compared with controlled groups, 604 and 3331 differentially expressed metabolite genes (DEGs) were found in FA-treated tea plants at 4 days and 8 days under drought stress, respectively; 54 and 125 differentially expressed metabolites (DEMs) were also found at two time points, respectively. Bioinformatics analysis showed that DEGs and DEMs participated in diverse biological processes such as ascorbate metabolism (GME, AO, ALDH and L-ascorbate), glutathione metabolism (GST, G6PDH, glutathione reduced form and CYS-GYL), and flavonoids biosynthesis (C4H, CHS, F3'5'H, F3H, kaempferol, quercetin and myricetin). Moreover, the results of co-expression analysis showed that the interactions of identified DEGs and DEMs diversely involved in ascorbate metabolism, glutathione metabolism, and flavonoids biosynthesis, indicating that FA may be involved in the regulation of these processes during drought stress. CONCLUSION: The results indicated that FA enhanced the drought tolerance of tea plants by (i) enhancement of the ascorbate metabolism, (ii) improvement of the glutathione metabolism, as well as (iii) promotion of the flavonoids biosynthesis that significantly improved the antioxidant defense of tea plants during drought stress. This study not only confirmed the main strategies of FA to protect tea plants from drought stress, but also deepened the understanding of the complex molecular mechanism of FA to deal with tea plants to better avoid drought damage.

2.
Nanoscale ; 12(24): 13095-13102, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32543632

RESUMO

Carbon nanotubes (CNTs) exhibit outstanding electrical and mechanical properties, but these superior properties are often compromised as nanotubes are assembled into bulk structures, which limits the use of CNT assemblies. Despite much work in this field, few studies have made in situ observations of the relationship between electrical conductivity and the amount of nanowelding within pristine CNT assemblies at the microscopic scale. Here, we report in situ transmission electron microscopy observations of electrical conductivity increase of CNT bundles. High-temperature Joule heating was applied to a CNT bundle to fuse adjacent carbon nanofibers with graphitic carbon bonds, as this causes the electrical conductivity of the CNT bundle to increase three orders of magnitude. Apart from the welding process of the cross-over CNT bundles, we further observed a new case of welding process of parallel CNT bundles. Here, we not only obtain the relationship between electrical conductivity of CNT bundles and their merging processes, but also show the effect of the relationship between electrical conductivity and Joule-heating induced temperature on CNT bundles, which follows the natural logarithm law. Improving effective inter-bonding between neighboring nanotubes would help facilitate large-scale development of high-performing, bulk-carbon-based materials from nanostructures in applications such as flexible devices, energy storage, and electrocatalysis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32408732

RESUMO

Recent discovery of intrinsic ferromagnetism in Fe3GeTe2 (FGT) monolayer [Deng, Y.; Nature 2018, 563, 94-99; Fei, Z.; Nat. Mater. 2018, 17, 778-782] not only extended the family of two-dimensional (2D) magnetic materials but also stimulated further interest in the possibility to tune their magnetic properties without changing the chemical composition or introducing defects. By means of density functional theory computations, we explore strain effects on the magnetic properties of the FGT monolayer. We demonstrate that the ferromagnetism can be largely enhanced by the tensile strain in the FGT monolayer due to the competitive effects of direct exchange and superexchange interaction. The average magnetic moments of Fe atoms increase monotonically with an increase in biaxial strain from -5 to 5% in FGT monolayer. The intriguing variation of magnetic moments with strain in the FGT monolayer is related to the charge transfer induced by the changes in the bond lengths. Given the successful fabrication of the FGT monolayer, the strain-tunable ferromagnetism in the FGT monolayer can stimulate the experimental effort in this field. This work also suggests an effective route to control the magnetic properties of the FGT monolayer. The pronounced magnetic response toward the biaxial strain can be used to design the magnetomechanical coupling spintronics devices based on FGT.

4.
BMC Microbiol ; 20(1): 103, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349665

RESUMO

BACKGROUND: Different mulches have variable effects on soil physicochemical characteristics, bacterial and fungal communities and ecosystem functions. However, the information about soil microbial diversity, community structure and ecosystem function in tea plantation under different mulching patterns was limited. In this study, we investigated bacterial and fungal communities of tea plantation soils under polyethylene film and peanut hull mulching using high-throughput 16S rRNA and ITS rDNA gene Illumina sequencing. RESULTS: The results showed that the dominant bacterial phyla were Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the dominant fungal phyla were Ascomycota, Mortierellomycota and Basidiomycota in all samples, but different mulching patterns affected the distribution of microbial communities. At the phylum level, the relative abundance of Nitrospirae in peanut hull mulching soils (3.24%) was significantly higher than that in polyethylene film mulching soils (1.21%) in bacterial communities, and the relative abundances of Mortierellomycota and Basidiomycota in peanut hull mulching soils (33.72, 21.93%) was significantly higher than that in polyethylene film mulching soils (14.88, 6.53%) in fungal communities. Peanut hull mulching increased the diversity of fungal communities in 0-20 cm soils and the diversity of bacterial communities in 20-40 cm soils. At the microbial functional level, there was an enrichment of bacterial functional features, including amino acid transport and metabolism and energy production and conversion, and there was an enrichment of fungal functional features, including undefined saprotrophs, plant pathogens and soils aprotrophs. CONCLUSIONS: Unique distributions of bacterial and fungal communities were observed in soils under organic mulching. Thus, we believe that the organic mulching has a positive regulatory effect on the soil bacterial and fungal communities and ecosystem functions, and so, is more suitable for tea plantation.

5.
J Phys Chem Lett ; 11(12): 4618-4624, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459502

RESUMO

An understanding of growth and degradation pathways is significant to solve the problem of the structural instability of all-inorganic perovskite nanocrystals (NCs). However, it is still a great challenge to directly record such dynamic processes with high spatial resolution owing to the existence of complex internal factors even using in situ transmission electron microscopy observation. Here, we employ a glassy matrix to produce CsPbBr3 NCs to ensure that the growth and degradation processes of CsPbBr3 NCs are recorded in the vacuum chamber, which could avoid the influence of the external factors, under electron beam (E-beam) irradiation. In addition, two stages of degradation pathways induced by the E-beam are observed sequentially: (1) a layer-by-layer decomposition and (2) instantaneous vanishing once the radius reaches the critical radius (∼2.3 nm). Indeed, we demonstrated that defects serve as a key flash point that could trigger the structural collapse of CsPbBr3 NCs. Our findings provide critical insights into the general instability issue of all-inorganic perovskite NCs in practical applications.

6.
J Phys Condens Matter ; 32(36): 365305, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369800

RESUMO

The realization of spin gapless semiconductor (SGS) and half-metal (HM) behavior in two-dimensional (2D) transition metal (TM) dichalcogenides is highly desirable for their applications in spintronic devices. Here, using density functional theory calculations, we demonstrate that Fe, Co, Ni substitutional impurities can not only induce magnetism in MoSe2 monolayer, but also convert the semiconducting MoSe2 to SGS/HM system. We also study the effects of mechanical strain on the electronic and magnetic properties of the doped monolayer. We show that for all TM impurities we considered, the system exhibits the robust SGS/HM behavior regardless of biaxial strain values. Moreover, it is found that the magnetic properties of TM-MoSe2 can effectively be tuned under biaxial strain by controlling the spin polarization of the 3d orbitals of Fe, Co, Ni atoms. Our findings offer a new route to designing the SGS/HM properties and modulating magnetic characteristics of the TM-MoSe2 system and may also facilitate the implementation of SGS/HM behavior and realization of spintronic devices based on other 2D materials.

7.
Gynecol Endocrinol ; : 1-5, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32338092

RESUMO

Renalase is a novel enzyme that can regulate blood pressure by degrading circulating catecholamines. We aimed to evaluate the possible effect of rs2296545, rs2576178 and rs10887800 polymorphisms of the renalase gene (RNLS) on the development of hypertensive disorders of pregnancy (HDP). This case-control study consisted of 185 patients with HDP and 380 normotensive pregnant women from the northeastern Chinese Han population. Association analyses were performed using PLINK, to compare allele and genotype frequencies in cases and controls. Adjustment for logistic regression analysis was performed by permutation testing. In the HDP patients compared with controls, we found that there was statistically significant difference in genotype distribution of rs2296545 (p = .037). Rs2296545 and rs2576178 polymorphisms have 1.91-fold (p = .004) and 1.73-fold (p = .015) increased risk of HDP in the dominant model, respectively. When compared preeclampsia (PE) to control, the RNLS rs2296545 polymorphism was significantly associated with PE risk in the dominant model (p = .021). We next analyzed the haplotypes of these SNPs and there was no difference between controls and HDP or PE. These findings suggest that rs2296545 was significantly associated with HDP and PE risk and the rs2576178 polymorphism may increase the susceptibility to HDP.

8.
Nanotechnology ; 31(31): 315710, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272461

RESUMO

An atomically thin MoSe2 layer has been synthesized on mica using molecular beam epitaxy (MBE). The polymorphous of the MoSe2 layer depends on the coverage and the growth temperature. At low coverages and low growth temperature, 1T-MoSe2 forms in addition to a comparable quantity of 2H-MoSe2. The metastable 1T-MoSe2 transfers gradually to the stable 2H-MoSe2 before the completion of the first monolayer. The current result sheds some light on the complexity of the nucleation and growth of transition metal dichalcogenide (TMDC) monolayers and implies a possible route for a phase selective synthesis using MBE.

10.
Aging (Albany NY) ; 12(3): 2798-2813, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045883

RESUMO

Atherosclerosis is one of the most common clinical cardiovascular disorders. Accumulating evidence indicates that lncRNAs exert critical functions in atherosclerosis; however, their functional roles and regulatory mechanisms remain unclear. In this study, we induced atherosclerotic plaques in three rabbit carotid arteries through an atherogenic diet and balloon injury; three age-matched rabbits were fed normal chow and served as controls. We thoroughly investigated the RNA (mRNA, lncRNA and miRNA) expression profiles in atherosclerotic rabbit carotid models with deep RNA sequencing. We identified several significantly differentially expressed RNAs. The corresponding lncRNA-miRNA-mRNA network was constructed, and the significantly dysregulated network was selected. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that the mRNAs in the network were involved in leukocyte activation, cell proliferation, cell adhesion molecules and cytokine-cytokine receptor interaction. After rigorous screening, we obtained a differentially expressed lncRNA-miRNA-mRNA interaction network associated with atherosclerosis. In the network, XLOC_054118 and XLOC_030217 upregulate the CHI3L1, SOAT, CTSB and CAPG genes by competitively binding to the miRNA ocu-miR-96-5p. XLOC_062719 and XLOC_063297 upregulate CTSS, CTSB and EDNRA genes by competitively binding to the miRNA ocu-miR-185-5p.

11.
Nat Commun ; 11(1): 772, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034131

RESUMO

Lateral heterostructures of two-dimensional transition metal dichalcogenides (TMDs) have offered great opportunities in the engineering of monolayer electronics, catalysis and optoelectronics. To explore the full potential of these materials, developing methods to precisely control the spatial scale of the heterostructure region is crucial. Here, we report the synthesis of ultra-long MoS2 nano-channels with several micrometer length and 2-30 nanometer width within the MoSe2 monolayers, based on intrinsic grain boundaries (GBs). First-principles calculations disclose that the strain fields near the GBs not only lead to the preferred substitution of selenium by sulfur but also drive coherent extension of the MoS2 channel from the GBs. Such a strain-driven synthesis mechanism is further shown applicable to other topological defects. We also demonstrate that the spontaneous strain of MoS2 nano-channels can further improve the hydrogen production activity of GBs, paving the way for designing GB based high-efficient TMDs in the catalytic application.

12.
Funct Integr Genomics ; 20(1): 103-115, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31392586

RESUMO

Atherosclerosis, a multifactorial and chronic immune inflammatory disorder, is the main cause of multiple cardiovascular diseases. Researchers recently reported that lncRNAs may exert important functions in the progression of atherosclerosis (AS). Some studies found that lncRNAs can act as ceRNAs to communicate with each other by the competition of common miRNA response elements. However, lncRNA-associated ceRNA network in terms of atherosclerosis is limited. In present study, we pioneered to construct and systematically analyze the lncRNA-mRNA network and reveal its potential roles in carotid atherosclerotic rabbit models. Atherosclerosis was induced in rabbits (n = 3) carotid arteries via a high-fat diet and balloon injury, while age-matched rabbits (n = 3) were treated with normal chow as controls. RNA-seq analysis was conducted on rabbits carotid arteries (n = 6) with or without plaque formation. Based on the ceRNA mechanism, a ternary interaction network including lncRNA, mRNA, and miRNA was generated and an AS-related lncRNA-mRNA network (ASLMN) was extracted. Furthermore, we analyzed the properties of ASLMN and discovered that six lncRNAs (MSTRG.10603.16, 5258.4, 12799.3, 5352.1, 12022.1, and 12250.4) were highly related to AS through topological analysis. GO and KEGG enrichment analysis indicated that lncRNA MSTRG.5258.4 may downregulate inducible co-stimulator to perform a downregulated role in AS through T cell receptor signaling pathway and downregulate THBS1 to conduct a upregulated function in AS through ECM-receptor interaction pathway. Finally, our results elucidated the important function of lncRNAs in the origination and progression of AS. We provided an ASLMN of atherosclerosis development in carotid arteries of rabbits and probable targets which may lay the foundation for future research of clinical applications.

13.
ACS Appl Mater Interfaces ; 12(2): 2862-2870, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31850729

RESUMO

Among large numbers of transition metal dichalcogenides (TMDCs), monolayer rhenium disulfide (ReS2) is of particular interest due to its unique structural anisotropy, which opens up unprecedented opportunities in dichroic atomical electronics. Understanding the domain structure and controlling the anisotropic evolution of ReS2 during the growth is considered critical for increasing the domain size toward a large-scale growth of monolayer ReS2. Herein, by employing angle-resolved Raman spectroscopy, we reveal that the hexagonal ReS2 domain is constructed by six well-defined subdomains with each b-axis parallel to the diagonal of the hexagon. By further combining the first-principles calculations and the transmission electron microscopy (TEM) characterization, a dislocation-involved anisotropic evolution is proposed to explain the formation of the domain structures and understand the limitation of the domain size. Based on these findings, growth rates of different crystal planes are well controlled to enlarge the domain size, and moreover, single-crystal domains with a triangle shape are obtained. With the improved domain size, large-scale uniform, strictly monolayer ReS2 films are grown further. Scalable field-effect transistor (FET) arrays are constructed, which show good electrical performances comparable or even superior to that of the single domains reported at room temperature. This work not only sheds light on comprehending the novel growth mechanism of ReS2 but also offers a robust and controllable strategy for the synthesis of large-area and high-quality two-dimensional materials with low structural symmetry.

14.
Small ; 16(4): e1905902, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31867892

RESUMO

Semiconducting nanowires offer many opportunities for electronic and optoelectronic device applications due to their unique geometries and physical properties. However, it is challenging to synthesize semiconducting nanowires directly on a SiO2 /Si substrate due to lattice mismatch. Here, a catalysis-free approach is developed to achieve direct synthesis of long and straight InSe nanowires on SiO2 /Si substrates through edge-homoepitaxial growth. Parallel InSe nanowires are achieved further on SiO2 /Si substrates through controlling growth conditions. The underlying growth mechanism is attributed to a selenium self-driven vapor-liquid-solid process, which is distinct from the conventional metal-catalytic vapor-liquid-solid method widely used for growing Si and III-V nanowires. Furthermore, it is demonstrated that the as-grown InSe nanowire-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of 271 A W-1 , ultrahigh detectivity of 1.57 × 1014 Jones, and a fast response speed of microsecond scale. The excellent performance of the photodetector indicates that as-grown InSe nanowires are promising in future optoelectronic applications. More importantly, the proposed edge-homoepitaxial approach may open up a novel avenue for direct synthesis of semiconducting nanowire arrays on SiO2 /Si substrates.

15.
Sci Rep ; 9(1): 17525, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772286

RESUMO

Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.) O. Kuntze) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in various subcellular compartments, especially in the chloroplast and cytoplasm. Furthermore, the analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in multiple metabolic pathways, including glycolysis, pyruvate metabolism, Calvin cycle and TCA cycle. Overall, this study not only systematically identified the proteins of S-nitrosylation in cysteines of tea leaves, but also laid the solid foundation for further verifying the roles of S-nitrosylation in cysteines of tea plants.

16.
J Ovarian Res ; 12(1): 87, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526390

RESUMO

BACKGROUND: This study aimed to examine the performance of the four risk of malignancy index (RMI) in discriminating borderline ovarian tumors (BOTs) and benign ovarian masses in daily clinical practice. METHODS: A total of 162 women with BOTs and 379 women with benign ovarian tumors diagnosed at the Second Affiliated Hospital of Harbin Medical University from January 2012 to December 2016 were enrolled in this retrospective study. Also, we classified these patients into serous borderline ovarian tumor (SBOT) and mucinous borderline ovarian tumor (MBOT) subgroup. Preoperative ultrasound findings, cancer antigen 125 (CA125) and menopausal status were reviewed. The area under the curve (AUC) of receiver operator characteristic curves (ROC) and performance indices of RMI I, RMI II, RMI III and RMI IV were calculated and compared for discrimination between benign ovarian tumors and BOTs. RESULTS: RMI I had the highest AUC (0.825, 95% CI: 0.790-0.856) among the four RMIs in BOTs group. Similar results were found in SBOT (0.839, 95% CI: 0.804-0.871) and MBOT (0.791, 95% CI: 0.749-0.829) subgroups. RMI I had the highest specificity among the BOTs group (87.6, 95% CI: 83.9-90.7%), SBOT (87.6, 95% CI: 83.9-90.7%) and MBOT group (87.6, 95% CI: 83.9-90.7%). RMI II scored the highest overall in terms of sensitivity among the BOTs group (69.75, 95% CI: 62.1-76.7%), SBOT (74.34, 95% CI: 65.3-82.1%) and MBOT (59.18, 95% CI: 44.2-73.0%) group. CONCLUSION: Compared to other RMIs, RMI I was the best-performed method for differentiation of BOTs from benign ovarian tumors. At the same time, RMI I also performed best in the discrimination SBOT from benign ovarian tumors.


Assuntos
Cistadenoma Mucinoso/diagnóstico , Cistadenoma Seroso/diagnóstico , Diagnóstico Diferencial , Neoplasias Ovarianas/diagnóstico , Adulto , Algoritmos , Biomarcadores Tumorais/sangue , Antígeno Ca-125/sangue , Cistadenoma Mucinoso/diagnóstico por imagem , Cistadenoma Mucinoso/patologia , Cistadenoma Seroso/diagnóstico por imagem , Cistadenoma Seroso/patologia , Feminino , Humanos , Neoplasias/sangue , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Período Pré-Operatório , Medição de Risco , Fatores de Risco
17.
Proc Natl Acad Sci U S A ; 116(39): 19440-19448, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501329

RESUMO

Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/genética , Histidina-tRNA Ligase/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação/genética , Axônios , Doença de Charcot-Marie-Tooth/metabolismo , Mutação com Ganho de Função/genética , Histidina-tRNA Ligase/metabolismo , Humanos , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo , Relação Estrutura-Atividade , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
18.
Nat Nanotechnol ; 14(10): 950-956, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451758

RESUMO

Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells.

19.
ACS Appl Mater Interfaces ; 11(27): 24478-24484, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31257843

RESUMO

Understanding the growth behaviors of nanomaterials during liquid-phase synthesis will be beneficial in designing and applying many functional nanodevices. However, the growth pathways regarding the nanocrystal facet development remain largely unknown as direct observation is lacking. Herein, the in situ study of Pb3O4 nanocrystals' growth is reported by using the liquid cell transmission electron microscopy with high spatial and temporal resolution. The findings indicate that Pb3O4 nanocrystals' growth follows distinct trajectories with shape evolution when the growth pathways are varied. Three growth pathways are observed, including the monomer growth of Pb3O4 nanocrystals, the coalescence growth of four stationary Pb3O4 nanocrystals, and the oriented attachment growth of Pb3O4 nanocrystal pairs and multiple randomly dispersed Pb3O4 nanocrystals. It is the first observation that Pb3O4 nanocrystals with a regular quadrilateral shape are formed, in which nanocrystal facets preferentially grow along the [002] direction of Pb3O4. Theoretical analysis confirms in this study that the surface energy and physical driving force play key roles in the growth of nanocrystals in a liquid. Such understanding of the growth pathways and quantification of formation kinetics are important for the design of hierarchical nanomaterials and the control of nanocrystal self-assembly for functional devices.

20.
Front Chem ; 7: 399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245352

RESUMO

Since the desire for real-time human health monitoring as well as seamless human-machine interaction is increasing rapidly, plenty of research efforts have been made to investigate wearable sensors and implantable devices in recent years. As a novel 2D material, graphene has aroused a boom in the field of sensor research around the world due to its advantages in mechanical, thermal, and electrical properties. Numerous graphene-based sensors used for human health monitoring have been reported, including wearable sensors, as well as implantable devices, which can realize the real-time measurement of body temperature, heart rate, pulse oxygenation, respiration rate, blood pressure, blood glucose, electrocardiogram signal, electromyogram signal, and electroencephalograph signal, etc. Herein, as a review of the latest graphene-based sensors for health monitoring, their novel structures, sensing mechanisms, technological innovations, components for sensor systems and potential challenges will be discussed and outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA