Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34791772

RESUMO

Accurate detection of hepatic hydrogen sulfide (H 2 S) to monitor H 2 S-related enzymes' activity is critical for acute hepatitis diagnosis, but remains a challenge due to the dynamic and transient nature of H 2 S. Here, we report a H 2 S-activatable near-infrared afterglow/MRI bimodal probe F1 -GdNP, which shows an "always-on" MRI signal and "off-on" afterglow signal toward H 2 S. F1 -GdNP shows fast response, high sensitivity and specificity toward H 2 S, permitting afterglow imaging of H 2 S and evaluation of cystathionine γ -lyase's activity in living mice. We further employ the high spatial-resolution MRI signal of F1 -GdNP to track its delivery and accumulation in liver. Importantly, F1 -GdNP offers a high signal-to-background ratio (SBR = 86.2 ± 12.0) to sensitively report on the increased hepatic H 2 S level in the acute hepatitis mice via afterglow imaging, which correlated well with the upregulated CSE activity in the liver, showcasing the good potential of F1 -GdNP for monitoring of acute hepatitis process in vivo.

2.
EBioMedicine ; 72: 103609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628353

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a severe psychiatric disorder that affects approximately 0.75% of the global population. Both genetic and environmental factors contribute to development of SCZ. SCZ tends to run in family while both genetic and environmental factor contribute to its etiology. Much evidence suggested that alterations in DNA methylations occurred in SCZ patients. METHODS: To investigate potential inheritable pattern of DNA methylation in SCZ family, we performed a genome-wide analysis of DNA methylation of peripheral blood samples from 106 Chinese SCZ family trios. Genome-wide DNA methylations were quantified by Agilent 1 × 244 k Human Methylation Microarray. FINDINGS: In this study, we proposed a loci inheritance frequency model that allows characterization of differential methylated regions as SCZ biomarkers. Based on this model, 112 hypermethylated and 125 hypomethylated regions were identified. Additionally, 121 hypermethylated and 139 hypomethylated genes were annotated. The results of functional enrichment analysis indicated that multiple differentially methylated genes (DMGs) involved in Notch/HH/Wnt signaling, MAPK signaling, GPCR signaling, immune response signaling. Notably, a number of hypomethylated genes were significantly enriched in cerebral cortex and functionally enriched in nervous system development. INTERPRETATION: Our findings not only validated previously discovered risk genes of SCZ but also identified novel candidate DMGs in SCZ. These results may further the understanding of altered DNA methylations in SCZ. FUNDING: None.

3.
Front Cell Dev Biol ; 9: 739594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660598

RESUMO

The tumorigenesis of skin cutaneous melanoma (SKCM) remains unclear. The tumor microenvironment (TME) is well known to play a vital role in the onset and progression of SKCM. However, the dynamic mechanisms of immune regulation are insufficient. We conducted a comprehensive analysis of immune cell infiltration in the TME. Based on the differentially expressed genes (DEGs) in clusters grouped by immune infiltration status, a set of hub genes related to the clinical prognosis of SKCM and tumor immune infiltration was explored. Methods: We analyzed immune cell infiltration in two independent cohorts and assessed the relationship between the internal pattern of immune cell infiltration and SKCM characteristics, including clinicopathological features, potential biological pathways, and gene mutations. Genes related to the infiltration pattern of TME immune cells were determined. Furthermore, the unsupervised clustering method (k-means) was used to divide samples into three different categories according to TME, which were defined as TME cluster-A, -B, and -C. DEGs among three groups of samples were analyzed as signature genes. We further distinguished common DEGs between three groups of samples according to whether differences were significant and divided DEGs into the Signature gene-A group with significant differences and the Signature gene-B group with insignificant differences. The Signature gene-A gene set mainly had exon skipping in SKCM, while the Signature gene-B gene set had no obvious alternative splicing form. Subsequently, we analyzed genetic variations of the two signatures and constructed a competing endogenous RNA (ceRNA) regulatory network. LASSO Cox regression was used to determine the immune infiltration signature and risk score of SKCM. Finally, we obtained 13 hub genes and calculated the risk score based on the coefficient of each gene to explore the impact of the high- and low-risk scores on biologically related functions and prognosis of SKCM patients further. The correlation between the risk score and clinicopathological characteristics of SKCM patients indicated that a low-risk score was associated with TME cluster-A classification (p < 0.001) and metastatic SKCM (p < 0.001). Thirteen hub genes also showed different prognostic effects in pan-cancer. The results of univariate and multivariate Cox analyses revealed that risk score could be used as an independent risk factor for predicting the prognosis of SKCM patients. The nomogram that integrated clinicopathological characteristics and immune characteristics to predict survival probability was based on multivariate Cox regression. Finally, 13 hub genes that showed different prognostic effects in pan-cancers were obtained. According to immunohistochemistry staining results, Ube2L6, SRPX2, and IFIT2 were expressed at higher levels, while CLEC4E, END3, and KIR2DL4 were expressed at lower levels in 25 melanoma specimens. Conclusion: We performed a comprehensive assessment of the immune-associated TME. To elucidate the potential development of immune-genomic features in SKCM, we constructed an unprecedented set of immune characteristic genes (EDN3, CLEC4E, SRPX2, KIR2DL4, UBE2L6, and IFIT2) related to the immune landscape of TME. These genes are related to different prognoses and drug responses of SKCM. The immune gene signature constructed can be used as a robust prognostic biomarker of SKCM and a predictor of an immunotherapy effect.

4.
Nat Commun ; 12(1): 6145, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686685

RESUMO

Tumor response to radiotherapy or ferroptosis is closely related to hydroxyl radical (•OH) production. Noninvasive imaging of •OH fluctuation in tumors can allow early monitoring of response to therapy, but is challenging. Here, we report the optimization of a diene electrochromic material (1-Br-Et) as a •OH-responsive chromophore, and use it to develop a near-infrared ratiometric fluorescent and photoacoustic (FL/PA) bimodal probe for in vivo imaging of •OH. The probe displays a large FL ratio between 780 and 1113 nm (FL780/FL1113), but a small PA ratio between 755 and 905 nm (PA755/PA905). Oxidation of 1-Br-Et by •OH decreases the FL780/FL1113 while concurrently increasing the PA755/PA905, allowing the reliable monitoring of •OH production in tumors undergoing erastin-induced ferroptosis or radiotherapy.


Assuntos
Radical Hidroxila/metabolismo , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Ferroptose , Fluorescência , Camundongos , Sondas Moleculares/química , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/radioterapia , Técnicas Fotoacústicas , Espectroscopia de Luz Próxima ao Infravermelho
5.
CNS Neurosci Ther ; 27(11): 1425-1428, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633764

RESUMO

In the present study, we performed an exome-wide investigation of the burden of rare disease-causing variants for major depressive disorder (MDD) using 16,702 samples from UK biobank. Gene-based association analysis and candidate gene prioritization analysis indicated that FOXH1 have significant association with MDD. In addition, sphingolipid metabolism pathway was found to be less enriched with rare disease-causing variants in the MDD group, suggesting that this gene set may be involved in the pathophysiology of MDD.

6.
J Dent Sci ; 16(4): 1255-1263, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34484594

RESUMO

Background/purpose: Pyroptosis is a form of programmed cell death dependent on the activation of caspase-1. Porphyromonas gingivalis (P. gingivalis) is a major pathogenic bacterium in periodontitis and its lipopolysaccharide (LPS) can trigger inflammation. However, whether P. gingivalis-LPS affects epithelial connections or triggers pyroptosis in the gingival epithelium is unknown. Materials and methods: Gingival samples from human donors were collected and the expression levels of E-cadherin, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1/4/5, interleukin (IL)-18, and IL-1ß were examined. P. gingivalis-LPS was injected into rat gingival sulcus to establish gingivitis models, and the expression levels of E-cadherin, NLRP3, caspase-1/11, IL-18, and IL-1ß were compared via immunohistochemistry. The mRNA levels of E-cadherin, caspase-1, IL-18, and IL-1ß were evaluated in oral mucosa epithelial cells (OMECs) and rat gingival tissues. Results: In the present study, NLRP3 (p < 0.01), caspase-1 (p < 0.01), caspase-4 (p = 0.044), and IL-18 (p = 0.036) expression was greater in the human inflammatory gingival samples, whereas E-cadherin (p = 0.045) had the opposite presentation. Gingivitis models were successfully established in rats with the injection of P. gingivalis-LPS. NLRP3 (p = 0.015), caspase-1 (p < 0.01), caspase-11 (p < 0.01), and IL-18 (p = 0.041) were upregulated, whereas E-cadherin (p = 0.038) expression was decreased. Furthermore, E-cadherin mRNA was decreased while caspase-1, IL-18, and IL-1ß mRNA levels were increased. The addition of a caspase-1 inhibitor reversed the expression changes. Conclusion: P. gingivalis-LPS may effectively destroy the epithelial connection by triggering pyroptosis.

7.
Hum Gene Ther ; 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34555961

RESUMO

Hemophilia A (HA) is a monogenic disease characterized by plasma clotting factor 8 (F8) deficiency due to F8 mutation. We have been attempting to cure HA permanently using a CRISPR-Cas9 gene-editing strategy. Here, we induced targeted integration of BDDF8 (B-domain-deleted F8) gene into the albumin locus of HA mice by hydrodynamic tail vein injection of editing plasmid vectors. One week after treatment, a high F8 activity ranging from 70% to 280% of normal serum levels was observed in all treated HA mice but dropped to background levels 3-5 weeks later. We found that the humoral immune reaction targeting F8 is the predominant cause of the decreased F8 activity. We hypothesized that hydrodynamic injection-induced liver damage triggered the release of large quantities of inflammatory cytokines. However, co-injection of plasmids expressing a dozen immunomodulatory factors failed to curtail the immune reaction and stabilize F8 activity. The spCas9 plasmid carrying a miR-142-3p target sequence alleviated the cellular immune response but was unable to deliver therapeutic efficacy. Strikingly, immunosuppressant cyclo-phosphamide virtually abolished the immune response, leading to a year-long stable F8 level. Our findings should have important implications in developing therapies in mouse models using the hydrodynamic gene delivery approach, highlighting the ne-cessity of modulating the innate immune response triggered by liver damage.

8.
ACS Nano ; 15(10): 16298-16313, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34590840

RESUMO

Ultrasound (US)-activated nanoagents capable of producing cytotoxic species have been promising for the treatment of deep-seated tumors; however, poor tumor uptake and insufficient generation of cytotoxic agents have largely limited their therapeutic efficacy in vivo. Herein, we report a hybrid FeCuS-lipid nanoparticle (AIBA@FeCuS-FeCO) by amphiphilic lipids-assisted emulsion of a free radical initiator (AIBA), a radical-sensitive CO donor (Fe3(CO)12), and radical-degradable FeCuS nanodisks for US-activated synergistic therapy of deep-located orthotopic gastric tumors in living mice. Upon US irradiation, AIBA@FeCuS-FeCO could be degraded and release cytotoxic AIBA radicals, CO, Fe2+, and Cu2+, allowing us to (1) enhance tumor uptake of AIBA@FeCuS-FeCO through CO-mediated vasodilation, (2) promote hydroxyl radical production and induce tumor ferroptosis via intracellular accumulation of Fe2+/Cu2+, and (3) kill tumor cells. Moreover, the subsequent administration of disulfiram (DSF) could further chelate with the liberated Cu2+, yielding toxic bis(N,N-diethyl dithiocarbamato)copper(II) chelates to synergize the therapeutic effect to ablate deep-seated orthotopic gastric tumors.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Linhagem Celular Tumoral , Cobre , Dissulfiram , Lipídeos , Camundongos
9.
Medicine (Baltimore) ; 100(33): e26850, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414935

RESUMO

BACKGROUND: Gastric cancer (GC) is a strong cause of global cancer mortality. Nucleotide excision repair (NER) can modulate platinum-based chemotherapeutic efficacy by removing drug-produced DNA damage. Some studies have found a link between excision repair cross complementation group 1 (ERCC1) rs2298881, one gene in NER pathway, and response to chemotherapy. However, the results have been disputed. METHODS: We conducted a meta-analysis to reevaluate the association between polymorphisms of NER gene (ERCC1 rs2298881) and the clinical outcomes in gastric cancer patients receiving platinum-based chemotherapy. Searching PubMed, Web of Science, EMBASE, Google Scholar, and China National Knowledge Infrastructure, 2 independent searchers found all pertinent literatures up to May 1, 2021. We enrolled studies according to consistent selection criteria, extracted and vitrified data. Crude odds ratios (ORs) and hazard ratios (HRs) with 95% confidence interval (CI) were applied to evaluate the effect of ERCC1 rs2298881 on patients treated by platinum-based chemotherapy. RESULTS: By the data gathered from 6 independent studies, 1940 cases diagnosed with gastric cancer and treated with chemotherapy were included, containing 1208 Good-Responders and 732 Poor-Responders. With a comprehensive meta-analysis, we found that the patients with ERCC1 rs2298881A allele had a worse response to chemotherapy than those who with rs2298881C allele under allelic model (A vs C), with the pooled OR of 0.780 (95% CI: 0.611-0.996, P = .046). And our analysis indicated that AA genotype was associated with unfavorable overall survival (HR = 1.540, 95% CI = 1.106-2.144, P = .011) compared with CC genotype. CONCLUSIONS: ERCC1 rs2298881 is suggested as a marker of clinical outcome in gastric cancer patients treated by platinum-based chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Oxaliplatina/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Humanos , Polimorfismo de Nucleotídeo Único , Prognóstico , Neoplasias Gástricas/mortalidade
10.
J Appl Biomater Funct Mater ; 19: 22808000211014724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34210203

RESUMO

PURPOSE: The effect of flushing at different temperatures on the preparation ability of rotary nickel-titanium files was investigated to provide guideline for clinical application. METHODS: Sixty ProTaper Universal F1 rotary nickel-titanium files were randomly divided into three groups treated by flushing at 6°C, 23°C, and 40°C. Root canal preparation was conducted by step-by-step method on standardized nickel-titanium instrument fracture models. During preparation, the thrust force was set as 10 N, and water was continuously flushed. The motor speed was 350 rpm (rounds per minute), and the torque was 3.0 N cm. When the set torque was reached, the motor automatically rotated in the reverse direction and was pulled out. RESULTS: Root canal preparation was performed using ProTaper Universal F1 rotary nickel-titanium files treated by flushing. The numbers of rotations before the device was fracture were 429.33 ± 214.68, 821.92 ± 410.43, and 1304.92 ± 297.81, respectively. When each root canal was completed, the numbers of instrument rotations were 272.15 ± 88.30, 188.85 ± 34.36, and 163.41 ± 16.18, respectively. Rank sum test and analysis of variance were performed by IBM SPSS Statistics v21.0 software, and both of them were p < 0.01, indicating that the number of cycles to failure (NCF) and the number of instrument rotations for each root tube were statistically different at the three temperatures. CONCLUSIONS: The self-made resin-simulated curved root canal can replace the real root canal to complete the root canal preparation experiment. The group of nickel-titanium files treated by flushing at 23°C can prepare more root canals and prolong the life of nickel-titanium files than at 6°C. When flushing was done at 40°C, the number of root canals prepared by nickel-titanium files was the highest, and it was not easy to damage the instrument, but lateral perforation occurred easily during root canal preparation.


Assuntos
Níquel , Titânio , Cavidade Pulpar , Desenho de Equipamento , Preparo de Canal Radicular , Temperatura
11.
Small ; 17(36): e2101924, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309199

RESUMO

Enzyme-activatable ratiometric near-infrared (NIR) fluorescent probes enabling noninvasive imaging of enzyme activity in vivo are promising for biomedical research; however, such probes with ratiometric fluorescence emissions both in NIR window under a single NIR light excitation are largely unexplored. Here, a quenched NIR fluorophore of Cy5.5 is integrated with NIR fluorescent poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT)-based semiconducting polymer nanoparticles (SPNs), and an αv ß3 integrin-targeting and matrix metalloproteinase-2 (MMP-2)-activatable ratiometric fluorescent probe (SPN-MMP-RGD) is developed. Under excitation at 660 nm, SPN-MMP-RGD shows "always-on" fluorescence of PCPDTBT (830 nm) and activatable fluorescence of Cy5.5 (690 nm) toward MMP-2, affording a remarkable ≈176-fold enhancement in fluorescence intensity ratio between 690 and 830 nm (I690 /I830 ) for sensitive detection of MMP-2 activity in vitro and in tumor cells. By virtue of ratiometric fluorescence imaging independently of probe's concentration, SPN-MMP-RGD can not only accurately report on MMP-2 levels regarding different tumor sizes, but also noninvasively delineate MMP-2-positive tiny gastric tumors metastasis in vivo. The authors' study reveals the potential of SPN-MMP-RGD for ratiometric fluorescence imaging of MMP-2 activity via combining two independent NIR fluorophores, which can be amenable for the design of other enzyme-activatable ratiometric NIR fluorescent probes for reliable in vivo imaging.


Assuntos
Nanopartículas , Neoplasias Gástricas , Humanos , Metaloproteinase 2 da Matriz , Imagem Óptica , Polímeros
12.
Angew Chem Int Ed Engl ; 60(33): 18082-18093, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34010512

RESUMO

Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.


Assuntos
Fosfatase Alcalina/metabolismo , Ciclo-Octanos/metabolismo , Radioisótopos de Gálio/metabolismo , Imagem Multimodal , Bibliotecas de Moléculas Pequenas/metabolismo , Fosfatase Alcalina/química , Animais , Ciclo-Octanos/química , Radioisótopos de Gálio/química , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Nanopartículas/química , Neoplasias Experimentais/diagnóstico por imagem , Tamanho da Partícula , Tomografia por Emissão de Pósitrons , Bibliotecas de Moléculas Pequenas/química
13.
Cancer Med ; 10(10): 3403-3412, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934535

RESUMO

A primary factor in tumor morbidity and mortality, lung adenocarcinoma (LUAD) is known to be a major subtype of lung cancer, having the lowest survival rate among all other cancers. Using The Cancer Genome Atlas (TCGA) database the relationship between the immune infiltrate and the NUP62CL was explored and the value of the NUP62CL expression in the prognosis and diagnosis LUAD was examined. Using the logistic regression and the Wilcoxon signed-rank test the relationship between the NUP62CL and the clinico-pathological features was analyzed. There was a significant correlation between the clinical stage (p = 0.005), the N (p = 0.004), and the decreased expression of NUP62CL. The prognosis of LUAD with high NUP62CL expression was revealed to be worse than that with low NUP62CL expression (p < 0.001) by the Kaplan-Meier survival analysis. The potentiality of NUP62CL to be a significant factor of prognosis for LUAD was indicated by the analyses of the multivariate and the univariate Cox regression models. In LUAD, the crucial role of recombination and maintenance of telomere as a significant pathway for NUP62CL was suggested by the Gene Set Enrichment Analysis (GSEA). To analyze the correlation between the genes and the tumor infiltrating immune cells the CIBERSORT was used. Moreover the positive correlation with the NUP62CL expression in LUAD of the infiltration level of the tumor infiltrating B lymphocytes and memory CD4+ T cells was exhibited by CIBERSORT. Therefore, NUP62CL may be a new valuable prognostic indicator for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Linfócitos do Interstício Tumoral/patologia , Glicoproteínas de Membrana/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Adenocarcinoma de Pulmão/patologia , Linfócitos B/patologia , Biomarcadores Tumorais/genética , Linfócitos T CD4-Positivos/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Prognóstico , Modelos de Riscos Proporcionais
14.
Front Physiol ; 12: 653040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959039

RESUMO

Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9-/- mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9-/- mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel's cartilage and around the mandibular bone in Fgf9-/- mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9-/- mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.

15.
Int Wound J ; 18(6): 796-804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33733609

RESUMO

This study aimed to explore the treatment effect of Z-plasty on a non-healing wound. A total of 72 patients diagnosed with a chronic non-healing wound in Peking University Third Hospital from November 2009 to August 2019 were retrospectively analysed. Among them, 27 patients were treated with Z-plasty, and 45 patients were treated with the general method. Detailed patient information was retrieved from medical records, including age, gender, body mass index (BMI), alcohol, smoking, and comorbidities (diabetes mellitus, hypertension, heart disease). Surgical parameters included operation time and intraoperative blood loss. Wound swelling, epidermal blisters, wound edge colour, and skin temperature at 1 day after surgery were assessed to evaluate the blood supply of the wound. Surgical complications included infection, haematoma, dehiscence, and non-healing within 2 weeks postoperatively. Student t test (for continuous data) and Chi-square test (for categorical data) were conducted to determine the statistical difference. We found no significant differences in age, gender, BMI, alcohol, smoking, and comorbidities between the two groups. Z-plasty did not show any advantages in the surgical time, invasive blood loss, hospital days, and hospitalisation expenses. The incidence of abnormal wound edge colour with Z-plasty was significantly lower than that with the general treatment (P < .05), and the Z-plasty enables better healing of the patient's wound (P < .05). Z-plasty promoted better recovery of chronic non-healing wounds than direct suturing.

16.
Chem Commun (Camb) ; 57(13): 1607-1610, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33443497

RESUMO

This work provides a novel strategy of optimal utilization of fluoroethylene carbonate to generate a uniform and compact solid electrolyte interface film, enhancing the cycle life of potassium ion batteries. With K foil being treated with fluoroethylene carbonate prior to use, enhanced cycling performance up to 1200 hours was achieved. Combining in situ electrochemical impedance spectroscopy with the distribution of relaxation time analysis and XPS analysis, the solubility of KF in the electrolyte is proposed as a crucial factor to determine the quality of a solid electrolyte interface. Our work contributes to understanding the role and manipulating the usage of the fluoroethylene carbonate additive in potassium ion batteries.

17.
Bioinformatics ; 37(9): 1225-1233, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814973

RESUMO

MOTIVATION: Gene clustering is a widely used technique that has enabled computational prediction of unknown gene functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species and strong conservation between the species. RESULTS: Here, we develop the bipartite tight spectral clustering (BiTSC) algorithm, which identifies gene co-clusters in two species based on gene orthology information and gene expression data. BiTSC novelly implements a formulation that encodes gene orthology as a bipartite network and gene expression data as node covariates. This formulation allows BiTSC to adopt and combine the advantages of multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering, consensus clustering, tight clustering and hierarchical clustering. As a result, BiTSC is a flexible and robust algorithm capable of identifying informative gene co-clusters without forcing all genes into co-clusters. Another advantage of BiTSC is that it does not rely on any distributional assumptions. Beyond cross-species gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying tight node co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify conserved gene co-clusters of Drosophila melanogaster and Caenorhabditis elegans, and we perform a series of downstream analysis to both validate BiTSC and verify the biological significance of the identified co-clusters. AVAILABILITY AND IMPLEMENTATION: The Python package BiTSC is open-access and available at https://github.com/edensunyidan/BiTSC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Drosophila melanogaster , Perfilação da Expressão Gênica , Algoritmos , Animais , Análise por Conglomerados , Expressão Gênica
18.
Anal Chem ; 92(19): 13396-13404, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32867467

RESUMO

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium Staphylococcus aureus (S. aureus) as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving S. aureus stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of S. aureus, the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to S. aureus, which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of S. aureus with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of S. aureus in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.


Assuntos
Bactérias/química , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/síntese química , Nanotecnologia/métodos , Antibacterianos/farmacologia , Aptâmeros de Nucleotídeos , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/microbiologia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Microbiologia de Alimentos/métodos , Humanos , Nanopartículas , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/microbiologia , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Vancomicina/farmacologia
19.
Angew Chem Int Ed Engl ; 59(46): 20636-20644, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686894

RESUMO

Stimuli-responsive smart photosensitizer (PS) nanoassemblies that allow enhanced delivery and controlled release of PSs are promising for imaging-guided photodynamic therapy (PDT) of tumors. However, the lack of high-sensitivity and spatial-resolution signals and fast washout of released PSs from tumor tissues have impeded PDT efficacy in vivo. Herein, we report tumor targeting, redox-responsive magnetic and fluorogenic PS nanoassemblies (NP-RGD) synthesized via self-assembly of a cRGD- and disulfide-containing fluorogenic and paramagnetic small molecule (1-RGD) for fluorescence/magnetic resonance bimodal imaging-guided tumor PDT. NP-RGD show high r1 relaxivity but quenched fluorescence and PDT activity; disulfide reduction by glutathione (GSH) promotes efficient disassembly into a small-molecule probe (2-RGD) and an organic PS (PPa-SH), which could further bind with intracellular albumin, allowing prolonged retention and cascade activation of fluorescence and PDT to ablate tumors.


Assuntos
Magnetismo , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Oxirredução , Fármacos Fotossensibilizantes/uso terapêutico
20.
Blood ; 135(17): 1472-1483, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32315388

RESUMO

Internal tandem duplication (ITD) mutations within the FMS-like receptor tyrosine kinase-3 (FLT3) can be found in up to 25% to 30% of acute myeloid leukemia (AML) patients and confer a poor prognosis. Although FLT3 tyrosine kinase inhibitors (TKIs) have shown clinical responses, they cannot eliminate primitive FLT3-ITD+ AML cells, which are potential sources of relapse. Therefore, elucidating the mechanisms underlying FLT3-ITD+ AML maintenance and drug resistance is essential to develop novel effective treatment strategies. Here, we demonstrate that FLT3 inhibition induces histone deacetylase 8 (HDAC8) upregulation through FOXO1- and FOXO3-mediated transactivation in FLT3-ITD+ AML cells. Upregulated HDAC8 deacetylates and inactivates p53, leading to leukemia maintenance and drug resistance upon TKI treatment. Genetic or pharmacological inhibition of HDAC8 reactivates p53, abrogates leukemia maintenance, and significantly enhances TKI-mediated elimination of FLT3-ITD+ AML cells. Importantly, in FLT3-ITD+ AML patient-derived xenograft models, the combination of FLT3 TKI (AC220) and an HDAC8 inhibitor (22d) significantly inhibits leukemia progression and effectively reduces primitive FLT3-ITD+ AML cells. Moreover, we extend these findings to an AML subtype harboring another tyrosine kinase-activating mutation. In conclusion, our study demonstrates that HDAC8 upregulation is an important mechanism to resist TKIs and promote leukemia maintenance and suggests that combining HDAC8 inhibition with TKI treatment could be a promising strategy to treat FLT3-ITD+ AML and other tyrosine kinase mutation-harboring leukemias.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box O1/metabolismo , Histona Desacetilases/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Repressoras/genética , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...