Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Methods Mol Biol ; 2206: 39-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32754809


During angiogenesis, endothelial cells must undergo a coordinated set of morphological changes in order to form a new vessel. There is a need for endothelial cells to communicate with each other in order to take up different identities in the sprout and to migrate collectively as a connected chord. Endothelial cells must also interact with a wide range of other cells that contribute to vessel formation. In ischemic disease, hypoxic cells in tissue will generate proangiogenic signals that promote and guide angiogenesis. In solid tumors, this function is co-opted by tumor cells, which make a complex range of interactions with endothelial cells, even integrating into the walls of vessels. In vessel repair, cells from the immune system contribute to the promotion and remodeling of new vessels. The coculture angiogenesis assay is a long-term in vitro protocol that uses fibroblasts to secrete and condition an artificial stromal matrix for tubules to grow through. We show here how the assay can be easily adapted to include additional cell types, facilitating the study of cellular interactions during neovascularization.

Small GTPases ; : 1-5, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32857689


Angiogenesis is the formation of new blood vessels from pre-existing ones. Angiogenesis requires endothelial cells to change shape and polarity, as well as acquire the ability to directionally migrate ‒ processes that are classically regulated by the Rho family of GTPases. RhoJ (previously TCL) is an endothelium enriched Rho GTPase with a 78% amino acid similarity to the ubiquitously expressed Cdc42. In our recent publication, we demonstrate that α5ß1 integrin co-traffics with RhoJ. RhoJ specifically represses the internalization of the active α5ß1 conformer, leading to a reduced ability of endothelial cells to form fibronectin fibrils. Surprisingly, this function of RhoJ is in opposition to the role of Cdc42, a known driver of fibrillogenesis. Intriguingly, we discovered that the competition for limiting amounts of the shared effector, PAK3, could explain the ability of these two Rho GTPases to regulate fibrillogenesis in opposing directions. Consequently, RhoJ null mice show excessive fibronectin deposition around retinal vessels, possibly due to the unopposed action of Cdc42. Our work suggests that the functional antagonism between RhoJ and Cdc42 could restrict fibronectin remodelling to sites of active angiogenesis to form a provisional matrix for vessel growth. One correlate of our findings is that RhoJ dependent repression of fibronectin remodelling could be atheroprotective in quiescent vessels.

Angiogenesis ; 23(3): 371-383, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32274611


BACKGROUND: VEGFR2 (vascular endothelial growth factor receptor 2) is the major pro-angiogenic receptor in endothelial cells. Compared to other members of the receptor tyrosine kinase family, we know relatively few VEGFR2 signaling partners. Our objective was to use mass spectrometry-based proteomics to identify novel binding partners of activated VEGFR2. METHODS: We created an endothelial cell line stably expressing GFP-tagged VEGFR2 and isolated activated receptor complexes. Analysis by mass spectrometry identified raftlin as a novel binding partner of VEGFR2. RESULTS: We found that raftlin is recruited to the activated VEGFR2 complex via the co-receptor Nrp1 (neuropilin-1). We show that raftlin regulates the surface levels of Nrp1 in endothelial cells, controlling the availability of Nrp1 for VEGFR2 interaction. Raftlin stabilizes active VEGFR2 at the cell surface by inhibiting endocytosis of the activated receptor. Raftlin also promotes recycling of internalized VEGFR2 to the cell surface. Raftlin alters the signaling outcomes of VEGFR2 activation, inhibiting the activation of p38 and FAK (focal adhesion kinases) specifically. Both pathways are linked to cell migration in endothelial cells, and raftlin inhibits endothelial cell migration in response to VEGF. CONCLUSION: Nrp1 is an important co-receptor for VEGFR2; however, its functions are still only partially understood. We show that raftlin works with Nrp1 in endothelial cells to control intracellular trafficking of the activated VEGFR2. This modulates the response to VEGF and controls endothelial cell migration.

Curr Biol ; 30(11): 2146-2155.e5, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32302585


Rho guanosine triphosphatases (GTPases) are master regulators of cell shape and cell movement [1]. The archetypal family members RhoA, Rac1, and Cdc42 arose early in eukaryotic evolution and coordinate a diverse range of cell morphologies and migrations. Evolution of the vertebrates was paralleled by expansion of this family through gene duplication. Emergence of an adaptive immune system and more complex neural systems presented new roles for Rho GTPases, filled by new family members. Cdc42 underwent gene duplication to produce two related proteins-RhoQ and RhoJ [2]. RhoQ is active in neural dynamics; however, RhoJ is highly expressed in endothelial cells under control of the endothelial-specific promoter ERG [3, 4]. RhoJ is required for angiogenesis [5, 6] and has multiple roles in this process [7, 8]. We recently demonstrated that RhoJ regulates the endosomal trafficking of podocalyxin during angiogenesis to control lumen formation [9]. Here, we use vesicle purification and proteomic analysis to identify the endothelial targets of RhoJ-mediated trafficking. We identify α5ß1 integrin as a major RhoJ cargo and show that RhoJ regulates the intracellular trafficking of active α5ß1 integrin in endothelial cells to repress fibronectin fibrillogenesis. Accordingly, mice lacking RhoJ show deregulated deposition of fibronectin around vessels during developmental angiogenesis. Intriguingly, we show that RhoJ acts in opposition to Cdc42 in this process through competition for a shared partner, PAK3. These studies identify a critical role for RhoJ in matrix remodeling during blood vessel formation and demonstrate a functional interrelationship between RhoJ and its evolutionary parent.

FASEB J ; 33(11): 12277-12287, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431053


Endothelial cells (ECs) form an active barrier between the circulation and the body. In addition to controlling transport of molecules between these 2 compartments, the endothelium is a major secretory organ, releasing proteins both into the circulation and into the vascular matrix. Although it is clearly important that proteins are correctly sorted into these 2 spaces, we currently know little of the polarization of this secretion or how it is controlled. Here, we present an optimized system for the analysis of polarized secretion and show that it allows the derivation of deep, robust proteomes from small numbers of primary ECs. We present the first endothelial apically and basolaterally secreted proteomes, demonstrating that ECs polarize the secretion of extracellular vesicle cargoes to the apical surface. Conversely, we find that protein secretion at the basolateral surface is focused on components of the extracellular matrix (ECM). Finally, we examine the role of liprin-α1 in secretion toward the basolateral compartment and identify a subset of ECM components that share this route with fibronectin.-Wei, H., Sundararaman, A., Dickson, E., Rennie-Campbell, L., Cross, E., Heesom, K. J., Mellor, H. Characterization of the polarized endothelial secretome.

J Biol Chem ; 291(28): 14410-29, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226623


The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca(2+)/calmodulin-dependent protein kinase kinase ß (CaMKKß) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKß. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca(2+)/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells.

Adenilato Quinase/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Matriz Extracelular/metabolismo , Oxidantes/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Fosforilação