Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Adv ; 8(8): eabm1515, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213223


Since Bell's theorem, it is known that local realism fails to explain quantum phenomena. Bell inequality violations manifestly show the incompatibility of quantum theory with classical notions of cause and effect. As recently found, however, the instrumental scenario-a pivotal tool in causal inference-allows for nonclassicality signatures going beyond this paradigm. If we are not limited to observational data and can intervene in our setup, then we can witness quantum violations of classical bounds on the causal influence among the involved variables even when no Bell-like violation is possible. That is, through interventions, the quantum behavior of a system that would seem classical can be demonstrated. Using a photonic setup-faithfully implementing the instrumental causal structure and switching between observation and intervention run by run-we experimentally witness such a nonclassicality. We also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modeling.

Opt Express ; 28(24): 35427-35437, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379657


Optical interrogation of tissues is broadly considered in biomedical applications. Nevertheless, light scattering by tissue limits the resolution and accuracy achieved when investigating sub-surface tissue features. Light carrying optical angular momentum or complex polarization profiles, offers different propagation characteristics through scattering media compared to light with unstructured beam profiles. Here we discuss the behaviour of structured light scattered by tissue-mimicking phantoms. We study the spatial and the polarization profile of the scattered modes as a function of a range of optical parameters of the phantoms, with varying scattering and absorption coefficients and of different lengths. These results show the non-trivial trade-off between the advantages of structured light profiles and mode broadening, stimulating further investigations in this direction.

Microscopia de Polarização/métodos , Imagens de Fantasmas , Espalhamento de Radiação , Biomimética , Luz , Modelos Biológicos
Phys Rev Lett ; 124(16): 160401, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383956


Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

Phys Rev Lett ; 122(2): 020503, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720314


The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.