Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(5): 1016-1022, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630791

RESUMO

MEDNIK syndrome (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratoderma) is an autosomal-recessive disorder caused by bi-allelic mutations in AP1S1, encoding the small σ subunit of the AP-1 complex. Central to the pathogenesis of MEDNIK syndrome is abnormal AP-1-mediated trafficking of copper transporters; this abnormal trafficking results in a hybrid phenotype combining the copper-deficiency-related characteristics of Menkes disease and the copper-toxicity-related characteristics of Wilson disease. We describe three individuals from two unrelated families in whom a MEDNIK-like phenotype segregates with two homozygous null variants in AP1B1, encoding the large ß subunit of the AP-1 complex. Similar to individuals with MEDNIK syndrome, the affected individuals we report display abnormal copper metabolism, evidenced by low plasma copper and ceruloplasmin, but lack evidence of copper toxicity in the liver. Functional characterization of fibroblasts derived from affected individuals closely resembles the abnormal ATP7A trafficking described in MEDNIK syndrome both at baseline and in response to copper treatment. Taken together, our results expand the list of inborn errors of copper metabolism.

2.
Genome Med ; 11(1): 12, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819258

RESUMO

BACKGROUND: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS: Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS: We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS: TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Mutação INDEL , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Síndrome de Smith-Magenis/genética , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Hipotonia Muscular/patologia , Síndrome de Smith-Magenis/patologia , Fatores de Transcrição/metabolismo , Adulto Jovem
3.
Adv Genet ; 103: 163-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30904094

RESUMO

Mutations in CDK13 have recently been identified as a novel cause of syndromic intellectual disability. In this chapter, we review the 44 cases of CDK13-related disorder reported to date, highlighting key clinical pointers to this diagnosis including characteristic craniofacial features, feeding difficulties in infancy, and the presence of structural heart or brain malformations. The spectrum of reported mutations is also described, demonstrating an excess of missense mutations arising in the protein kinase domain. Exploration of genotype-phenotype correlations suggests a trend toward milder phenotypes in patients with mutations predicted to cause haploinsufficiency of CDK13, while missense mutations affecting amino acid residue 842 appear most likely to be associated with structural malformations. The greater phenotypic impact of missense variants is hypothesized to occur due to a dominant-negative mechanism, by which the mutant protein acts to sequester cyclin K in inactive complexes. Functional studies to validate this hypothesis have not yet been carried out, however. Differential diagnosis and recommendations for clinical care of patients with CDK13-related disorder are also described, emphasizing baseline echocardiography, vigilance for feeding and swallowing difficulties, and regular developmental evaluation as key components of care. Finally, future directions for CDK13 research are discussed, including the need to resolve uncertainty regarding pathogenicity of CDK13 haploinsufficiency, and to gather further longitudinal data from large cohorts in order to inform the clinical care of patients with this diagnosis.


Assuntos
Proteína Quinase CDC2/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Encéfalo/patologia , Diagnóstico Diferencial , Feminino , Genótipo , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Fenótipo
5.
Ann Neurol ; 85(2): 170-180, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30549301

RESUMO

OBJECTIVE: Variant ataxia-telangiectasia is caused by mutations that allow some retained ataxia telangiectasia-mutated (ATM) kinase activity. Here, we describe the clinical features of the largest established cohort of individuals with variant ataxia-telangiectasia and explore genotype-phenotype correlations. METHODS: Cross-sectional data were collected retrospectively. Patients were classified as variant ataxia-telangiectasia based on retained ATM kinase activity. RESULTS: The study includes 57 individuals. Mean age at assessment was 37.5 years. Most had their first symptoms by age 10 (81%). There was a diagnostic delay of more than 10 years in 68% and more than 20 years in one third of probands. Disease severity was mild in one third of patients, and 43% were still ambulant 20 years after disease onset. Only one third had predominant ataxia, and 18% had a pure extrapyramidal presentation. Individuals with extrapyramidal presentations had milder neurological disease severity. There were no significant respiratory or immunological complications, but 25% of individuals had a history of malignancy. Missense mutations were associated with milder neurological disease severity, but with a higher risk of malignancy, compared to leaky splice site mutations. INTERPRETATION: Individuals with variant ataxia-telangiectasia require malignancy surveillance and tailored management. However, our data suggest the condition may sometimes be mis- or underdiagnosed because of atypical features, including exclusive extrapyramidal symptoms, normal eye movements, and normal alpha-fetoprotein levels in some individuals. Missense mutations are associated with milder neurological presentations, but a particularly high malignancy risk, and it is important for clinicians to be aware of these phenotypes. ANN NEUROL 2019;85:170-180.


Assuntos
Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Doenças dos Gânglios da Base/diagnóstico , Doenças dos Gânglios da Base/genética , Genótipo , Índice de Gravidade de Doença , Adolescente , Adulto , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Estudos Retrospectivos , Adulto Jovem
6.
J Med Genet ; 55(12): 803-813, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30287594

RESUMO

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30194038

RESUMO

We aim to further delineate the phenotype associated with pathogenic variants in the SLC35A2 gene, and review all published literature to-date. This gene is located on the X chromosome and encodes a UDP-galactose transporter. Pathogenic variants in SLC35A2 cause a congenital disorder of glycosylation. The condition is rare, and less than twenty patients have been reported to-date. The phenotype is complex and has not been fully defined. Here, we present a series of five patients with de novo pathogenic variants in SLC35A2. The patients' phenotype includes developmental and epileptic encephalopathy with hypsarrhythmia, facial dysmorphism, severe intellectual disability, skeletal abnormalities, congenital cardiac disease and cortical visual impairment. Developmental and epileptic encephalopathy with hypsarrhythmia is present in most patients with SLC35A2 variants, and is drug-resistant in the majority of cases. Adrenocorticotropic hormone therapy may achieve partial or complete remission of seizures, but the effect is usually temporary. Isoelectric focusing of transferrins may be normal after infancy, therefore a congenital disorder of glycosylation should still be considered as a diagnosis in the presence of a suggestive phenotype. We also provide evidence that cortical visual impairment is part of the phenotypic spectrum.

8.
Hum Mutat ; 39(9): 1226-1237, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29897170

RESUMO

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.

9.
Wellcome Open Res ; 3: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900417

RESUMO

Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as the DNMT3A-overgrowth syndrome, is an overgrowth intellectual disability syndrome first described in 2014 with a report of 13 individuals with constitutive heterozygous DNMT3A variants. Here we have undertaken a detailed clinical study of 55 individuals with de novoDNMT3A variants, including the 13 previously reported individuals. An intellectual disability and overgrowth were reported in >80% of individuals with TBRS and were designated major clinical associations. Additional frequent clinical associations (reported in 20-80% individuals) included an evolving facial appearance with low-set, heavy, horizontal eyebrows and prominent upper central incisors; joint hypermobility (74%); obesity (weight ³2SD, 67%); hypotonia (54%); behavioural/psychiatric issues (most frequently autistic spectrum disorder, 51%); kyphoscoliosis (33%) and afebrile seizures (22%). One individual was diagnosed with acute myeloid leukaemia in teenage years. Based upon the results from this study, we present our current management for individuals with TBRS.

10.
Clin Med (Lond) ; 18(2): 192, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29626039
11.
J Med Genet ; 55(1): 28-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29021403

RESUMO

INTRODUCTION: Recent evidence has emerged linking mutations in CDK13 to syndromic congenital heart disease. We present here genetic and phenotypic data pertaining to 16 individuals with CDK13 mutations. METHODS: Patients were investigated by exome sequencing, having presented with developmental delay and additional features suggestive of a syndromic cause. RESULTS: Our cohort comprised 16 individuals aged 4-16 years. All had developmental delay, including six with autism spectrum disorder. Common findings included feeding difficulties (15/16), structural cardiac anomalies (9/16), seizures (4/16) and abnormalities of the corpus callosum (4/11 patients who had undergone MRI). All had craniofacial dysmorphism, with common features including short, upslanting palpebral fissures, hypertelorism or telecanthus, medial epicanthic folds, low-set, posteriorly rotated ears and a small mouth with thin upper lip vermilion. Fifteen patients had predicted missense mutations, including five identical p.(Asn842Ser) substitutions and two p.(Gly717Arg) substitutions. One patient had a canonical splice acceptor site variant (c.2898-1G>A). All mutations were located within the protein kinase domain of CDK13. The affected amino acids are highly conserved, and in silico analyses including comparative protein modelling predict that they will interfere with protein function. The location of the missense mutations in a key catalytic domain suggests that they are likely to cause loss of catalytic activity but retention of cyclin K binding, resulting in a dominant negative mode of action. Although the splice-site mutation was predicted to produce a stable internally deleted protein, this was not supported by expression studies in lymphoblastoid cells. A loss of function contribution to the underlying pathological mechanism therefore cannot be excluded, and the clinical significance of this variant remains uncertain. CONCLUSIONS: These patients demonstrate that heterozygous, likely dominant negative mutations affecting the protein kinase domain of the CDK13 gene result in a recognisable, syndromic form of intellectual disability, with or without congenital heart disease.


Assuntos
Proteína Quinase CDC2/química , Proteína Quinase CDC2/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação/genética , Adolescente , Criança , Sequência Conservada , Feminino , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Domínios Proteicos , Síndrome , Termodinâmica
12.
Clin Med (Lond) ; 17(6): 558-561, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29196358

RESUMO

Global developmental delay and intellectual disability are phenotypically and genetically heterogeneous and a specific diagnosis is not reached in many cases. This paper outlines a systematic approach to global developmental delay and intellectual disability.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/diagnóstico , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Testes Genéticos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Análise em Microsséries , Fenótipo
13.
Mol Genet Genomic Med ; 5(5): 495-507, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28944233

RESUMO

BACKGROUND: Syntaxin-binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investigate the mechanism of pathogenicity and genotype-phenotype correlations. METHODS: We report 11 patients with pathogenic de novo mutations in STXBP1 identified in the first 4293 trios of the Deciphering Developmental Disorder (DDD) study, including six missense variants. We analyzed the structural locations of the pathogenic missense variants from this study and the literature, as well as population missense variants extracted from Exome Aggregation Consortium (ExAC). RESULTS: Pathogenic variants are significantly more likely to occur at highly conserved locations than population variants, and be buried inside the protein domain. Pathogenic mutations are also more likely to destabilize the domain structure compared with population variants, increasing the proportion of (partially) unfolded domains that are prone to aggregation or degradation. We were unable to detect any genotype-phenotype correlation, but unlike previously reported cases, most of the DDD patients with STXBP1 pathogenic variants did not present with very early-onset or severe epilepsy and encephalopathy, though all have developmental delay with intellectual disability and most display behavioral problems and suffered seizures in later childhood. CONCLUSION: Variants across STXBP1 that cause loss of function can result in severe intellectual disability with or without seizures, consistent with a haploinsufficiency mechanism. Pathogenic missense mutations act through destabilization of the protein domain, making it prone to aggregation or degradation. The presence or absence of early seizures may reflect ascertainment bias in the literature as well as the broad recruitment strategy of the DDD study.

14.
Am J Hum Genet ; 101(2): 300-310, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777935

RESUMO

Massively parallel sequencing has revealed many de novo mutations in the etiology of developmental and epileptic encephalopathies (EEs), highlighting their genetic heterogeneity. Additional candidate genes have been prioritized in silico by their co-expression in the brain. Here, we evaluate rare coding variability in 20 candidates nominated with the use of a reference gene set of 51 established EE-associated genes. Variants within the 20 candidate genes were extracted from exome-sequencing data of 42 subjects with EE and no previous genetic diagnosis. We identified 7 rare non-synonymous variants in 7 of 20 genes and performed Sanger sequence validation in affected probands and parental samples. De novo variants were found only in SLC1A2 (aka EAAT2 or GLT1) (c.244G>A [p.Gly82Arg]) and YWHAG (aka 14-3-3γ) (c.394C>T [p.Arg132Cys]), highlighting the potential cause of EE in 5% (2/42) of subjects. Seven additional subjects with de novo variants in SLC1A2 (n = 1) and YWHAG (n = 6) were subsequently identified through online tools. We identified a highly significant enrichment of de novo variants in YWHAG, establishing their role in early-onset epilepsy, and we provide additional support for the prior assignment of SLC1A2. Hence, in silico modeling of brain co-expression is an efficient method for nominating EE-associated genes to further elucidate the disorder's etiology and genotype-phenotype correlations.


Assuntos
Proteínas 14-3-3/genética , Predisposição Genética para Doença , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Espasmos Infantis/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Exoma/genética , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Fenótipo , Adulto Jovem
15.
Arch Dis Child ; 102(4): 328-330, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27799156

RESUMO

BACKGROUND AND AIMS: Ataxia telangiectasia (A-T) is a rare progressive, multisystem genetic disease. Families of children with ultra-rare diseases often experience significant diagnostic delays. We reviewed the diagnostic process for A-T in order to identify causes of delay in an attempt to facilitate earlier identification of A-T in the future. METHODS: A retrospective case note review of 79 children at the National Paediatric A-T clinic seen since May 2009. Data were collected on the nature and age of initial symptoms, the age at first presentation, measurement of alpha feto-protein (AFP) and age of genetic diagnostic confirmation. RESULTS: At presentation, 71 children (90%) had ataxia. The median presentation delay (from first parental concern to presentation) was 8 months (range 0-118 months), and the median diagnostic delay (genetic confirmation of diagnosis) was 12 months (range 1-109 months). CONCLUSIONS: There are significant delays in presentation and diagnostic confirmation of A-T. A greater awareness of A-T and early measurement of AFP may help to improve this.


Assuntos
Ataxia Telangiectasia/diagnóstico , Fatores Etários , Criança , Pré-Escolar , Diagnóstico Tardio , Humanos , Lactente , Estudos Retrospectivos , alfa-Fetoproteínas/metabolismo
16.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790796

RESUMO

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Assuntos
Íntrons , Mutação , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Pré-Escolar , Ativação Enzimática , Éxons , Fibroblastos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Imagem Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenótipo
17.
Am J Med Genet A ; 173(2): 435-443, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27862890

RESUMO

Loss-of-function mutations and deletions of the SOX2 gene are known to cause uni- and bilateral anophthalmia and microphthalmia as well as related disorders such as anophthalmia-esophageal-genital syndrome. Thus, anophthalmia/microphthalmia is the primary indication for targeted, "phenotype first" analyses of SOX2. However, SOX2 mutations are also associated with a wide range of non-ocular abnormalities, such as postnatal growth retardation, structural brain anomalies, hypogenitalism, and developmental delay. The present report describes three patients without anophthalmia/microphthalmia and loss-of-function mutations or microdeletions of SOX2 who had been investigated in a "genotype first" manner due to intellectual disability/developmental delay using whole exome sequencing or chromosomal microarray analyses. This result prompted us to perform SOX2 Sanger sequencing in 192 developmental delay/intellectual disability patients without anophthalmia or microphthalmia. No additional SOX2 loss-of-function mutations were detected in this cohort, showing that SOX2 is clearly not a major cause of intellectual disability without anophthalmia/microphthalmia. In our three patients and four further, reported "genotype first" SOX2 microdeletion patients, anophthalmia/microphthalmia was present in less than half of the patients. Thus, SOX2 is another example of a gene whose clinical spectrum is broadened by the generation of "genotype first" findings using hypothesis-free, genome-wide methods. © 2016 Wiley Periodicals, Inc.


Assuntos
Estudos de Associação Genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Mutação Puntual , Fatores de Transcrição SOXB1/genética , Deleção de Sequência , Encéfalo/anormalidades , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Facies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Imagem por Ressonância Magnética/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Sistema de Registros
18.
Arch Dis Child ; 101(12): 1137-1141, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27573920

RESUMO

BACKGROUND: Ataxia telangiectasia (A-T) is a rare multisystem disease with high early mortality from lung disease and cancer. Nutritional failure adversely impacts outcomes in many respiratory diseases. Several factors influence nutrition in children with A-T. We hypothesised that children with A-T have progressive growth failure and that early gastrostomy tube feeding (percutaneous endoscopic gastrostomy, PEG) is a favourable management option with good nutritional outcomes. METHODS: Data were collected prospectively on weight, height and body mass index (BMI) at the national paediatric A-T clinic. Adequacy and safety of oral intake was assessed. Nutritional advice was given at each multidisciplinary review. RESULTS: 101 children (51 girls) had 222 measurements (32 once, 32 twice, 24 thrice) between 2009 and 2016. Median (IQR) age was 9.3 (6.4 to 13.1) years. Mean (SD) weight, height and BMI Z-scores were respectively -1 (1.6), -1.2 (1.2) and -0.4 (1.4). 35/101 children had weight Z-scores below -2 on at least one occasion. Weight, height and BMI Z-scores declined over time. Decline was most obvious after 8 years of age. 14/101 (14%) children had a PEG, with longitudinal data available for 12. In a nested case control study, there was a trend for improvement in weight in those with a PEG (p=0.10). CONCLUSIONS: Patients with A-T decline in growth over time. There is an urgent need for new strategies, including an understanding of why growth falters. We suggest early proactive consideration of PEG from age 8 years onwards to prevent progressive growth failure.


Assuntos
Ataxia Telangiectasia/complicações , Transtornos do Crescimento/etiologia , Estatura/fisiologia , Índice de Massa Corporal , Peso Corporal/fisiologia , Estudos de Casos e Controles , Criança , Nutrição Enteral/estatística & dados numéricos , Feminino , Transtornos do Crescimento/dietoterapia , Humanos , Masculino , Estado Nutricional/fisiologia , Estudos Prospectivos , Resultado do Tratamento
19.
Clin Dysmorphol ; 25(4): 135-45, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27465822

RESUMO

Rubinstein-Taybi syndrome (RTS) is an autosomal dominant neurodevelopmental disorder characterized by growth deficiency, broad thumbs and great toes, intellectual disability and characteristic craniofacial appearance. Mutations in CREBBP account for around 55% of cases, with a further 8% attributed to the paralogous gene EP300. Comparatively few reports exist describing the phenotype of Rubinstein-Taybi because of EP300 mutations. Clinical and genetic data were obtained from nine patients from the UK and Ireland with pathogenic EP300 mutations, identified either by targeted testing or by exome sequencing. All patients had mild or moderate intellectual impairment. Behavioural or social difficulties were noted in eight patients, including three with autistic spectrum disorders. Typical dysmorphic features of Rubinstein-Taybi were only variably present. Additional observations include maternal pre-eclampsia (2/9), syndactyly (3/9), feeding or swallowing issues (3/9), delayed bone age (2/9) and scoliosis (2/9). Six patients had truncating mutations in EP300, with pathogenic missense mutations identified in the remaining three. The findings support previous observations that microcephaly, maternal pre-eclampsia, mild growth restriction and a mild to moderate intellectual disability are key pointers to the diagnosis of EP300-related RTS. Variability in the presence of typical facial features of Rubinstein-Taybi further highlights clinical heterogeneity, particularly among patients identified by exome sequencing. Features that overlap with Floating-Harbor syndrome, including craniofacial dysmorphism and delayed osseous maturation, were observed in three patients. Previous reports have only described mutations predicted to cause haploinsufficiency of EP300, whereas this cohort includes the first described pathogenic missense mutations in EP300.


Assuntos
Estudos de Associação Genética , Genótipo , Fenótipo , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Adolescente , Sequência de Aminoácidos , Proteína de Ligação a CREB/genética , Criança , Pré-Escolar , Proteína p300 Associada a E1A/genética , Facies , Feminino , Humanos , Masculino , Mutação , Análise de Sequência de DNA , Adulto Jovem
20.
Mol Genet Genomic Med ; 4(3): 359-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27247962

RESUMO

BACKGROUND: Poikiloderma is defined as a chronic skin condition presenting with a combination of punctate atrophy, areas of depigmentation, hyperpigmentation and telangiectasia. In a variety of hereditary syndromes such as Rothmund-Thomson syndrome (RTS), Clericuzio-type poikiloderma with neutropenia (PN) and Dyskeratosis Congenita (DC), poikiloderma occurs as one of the main symptoms. Here, we report on genotype and phenotype data of a cohort of 44 index patients with RTS or related genodermatoses. METHODS: DNA samples from 43 patients were screened for variants in the 21 exons of the RECQL4 gene using PCR, SSCP-PAGE analysis and/or Sanger sequencing. Patients with only one or no detectable mutation in the RECQL4 gene were additionally tested for variants in the 8 exons of the USB1 (C16orf57) gene by Sanger sequencing. The effect of novel variants was evaluated by phylogenic studies, single-nucleotide polymorphism (SNP) databases and in silico analyses. RESULTS: We identified 23 different RECQL4 mutations including 10 novel and one homozygous novel USB1 (C16orf57) mutation in a patient with PN. Moreover, we describe 31 RECQL4 and 8 USB1 sequence variants, four of them being novel intronic RECQL4 sequence changes that may have some deleterious effects on splicing mechanisms and need further evaluation by transcript analyses. CONCLUSION: The current study contributes to the improvement of genetic diagnostic strategies and interpretation in RTS and PN that is relevant in order to assess the patients' cancer risk, to avoid continuous and inconclusive clinical evaluations and to clarify the recurrence risk in the families. Additionally, it shows that the phenotype of more than 50% of the patients with suspected Rothmund-Thomson disease may be due to mutations in other genes raising the need for further extended genetic analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA