Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 25: 104265, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453283

RESUMO

The data presented here represent estimates of the phosphorus content of crop production, phosphorus use efficiency (PUE) and agricultural phosphorus inputs associated with it across the contiguous United States. Net Anthropogenic Phosphorus Input (NAPI) estimates and related data are also provided. Data are presented at county, sub-regional and regional scales. Here, subregions refer to multi-county areas delineated with the goal of obtaining more uniform reporting areas than individual counties. Regions refer to the USDA Farm Resource Regions. The data are reported for 6 agricultural census years, 1987, 1992, 1997, 2002, 2007 and 2012. Estimates of the variables were derived originally from USDA agricultural census data, US population census data, and other sources, using version 3.1 of the NANI/NAPI calculator toolbox (Hong et al.,2011).

2.
Sci Total Environ ; 685: 174-188, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31174115

RESUMO

Crop N use efficiency (NUE) and P use efficiency (PUE) might be expected to exhibit different patterns across agricultural regions due to their very different environmental dynamics and management strategies. Here, following our previous work on regional patterns of NUE, we review patterns of PUE and related variables, including major inputs of P to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Unlike N, P inputs to cropland only occur in the forms of P fertilizer, which has generally changed little over time relative to N fertilizer, and manure P, which has increased. Expressed as percentages of total P inputs, they necessarily have opposite impacts on PUE because of the stronger relationship of crop production to fertilizer compared to manure produced in a region. Across the US, PUE trends have varied significantly, increasing in some regions, in contrast to NUE which has generally remained constant or declined on decadal time scales. As with N, the Heartland region dominates national patterns due to the magnitude of crop production, showing a significant relationship with fertilizer P but none with manure P on a cropland area basis. Most other regions show similar responses, but the Northern Crescent, Eastern Uplands and Southern Seaboard regions shows a negative response to fertilizer on the same basis. The regional response of production to P inputs on a cropland area basis differs from that on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. In the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. Differences between P and N need to be considered in the context of management of environmental quality and food security.


Assuntos
Agricultura/métodos , Fertilizantes , Fósforo/análise , Produção Agrícola/métodos , Fazendas , Abastecimento de Alimentos , Estados Unidos
3.
Sci Total Environ ; 648: 1549-1559, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340300

RESUMO

The separation between crop- and livestock production is an important driver of agricultural nutrient surpluses in many parts of the world. Nutrient surpluses can be symptomatic of poor resource use efficiency and contribute to environmental problems. Thus, it is important not only to identify where surpluses can be reduced, but also the potential policy tools that could facilitate reductions. Here, we explored linkages between livestock production and nutrient flows for the Baltic Sea catchment and discuss management practices and policies that influence the magnitude of nutrient surpluses. We found that the majority of nutrients cycled through the livestock sector and that large nitrogen and phosphorus surpluses often occurred in regions with high livestock density. Imports of mineral fertilizers and feed to the catchment increased overall surpluses, which in turn increased the risk of nutrient losses from agriculture to the aquatic environment. Many things can be done to reduce agricultural nutrient surpluses; an important example is using manure nutrients more efficiently in crop production, thereby reducing the need to import mineral fertilizers. Also, existing soil P reserves could be used to a greater extent, which further emphasizes the need to improve nutrient management practices. The countries around the Baltic Sea used different approaches to manage agricultural nutrient surpluses, and because eight of the coastal countries are members in the European Union (EU), common EU policies play an important role in management. We observed reductions in surpluses between 2000 and 2010 in some countries, which suggested the influence of different approaches to management and policy and that there are opportunities for further improvement. However, the separation between crop and livestock production in agriculture appears to be an underlying cause of nutrient surpluses; thus, further research is needed to understand how policy can address these structural issues and increase sustainability in food production.


Assuntos
Monitoramento Ambiental , Fertilizantes/análise , Poluentes Químicos da Água/análise , Agricultura , Animais , Europa (Continente) , Gado/fisiologia , Densidade Demográfica
4.
Data Brief ; 18: 1877-1888, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904691

RESUMO

[The data presented here represent estimates of the nitrogen content of crop production, nitrogen use efficiency (NUE) and agricultural nitrogen inputs associated with it across the contiguous United States. Net Anthropogenic Nitrogen Input (NANI) estimates and related data are also provided. Data are presented at county, sub-regional and regional scales. Here, subregions refer to multi-county areas delineated with the goal of obtaining more uniform reporting areas than individual counties. Regions refer to the USDA Farm Resource Regions. The data are reported for 6 agricultural census years, 1987, 1992, 1997, 2002, 2007 and 2012. Estimates of the variables were derived originally from USDA agricultural census data, US population census data, and other sources, using version 3.1 of the NANI calculator toolbox [1], [2], [3]].

5.
Sci Total Environ ; 635: 498-511, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677675

RESUMO

National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and food security.

6.
Environ Sci Pollut Res Int ; 24(35): 27201-27214, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965271

RESUMO

China is undergoing a rapid transition from a rural to an urban society. This societal change is a consequence of a national drive toward economic prosperity. However, accelerated urban development resulting from rapid population migration from rural to urban lands has led to high levels of untreated sewage entering aquatic ecosystems directly. Consequently, many of these regions have been identified as hot spots of riverine nitrogen (N) pollution because of the increasing level of urban point-source discharge. In order to address this concern, we assessed effects of urban development on ammonia-nitrogen (AN) loads using a panel data regression model. The model, expressed as an exponential function of anthropogenic N inputs multiplied by a power function of streamflow, was applied to 20 subwatersheds of the Huai River Basin for the years 2003-2010. The results indicated that this model can account for 81% of the variation in annual AN fluxes over space and time. Application of this model to three scenarios of urban development and sewage treatment (termed urbanization priority, sustainable development, and environmental priority) suggests that future N pollution will inevitably deteriorate if current urban environmental management and investment are not significantly improved. Stronger support for environmental management is very critical to alleviate N pollution and improve water quality. More effort should focus on improving sewage treatment and the N removal rate of the current sewage system in light of the increasing degree of urbanization.


Assuntos
Amônia/análise , Migração Humana , Nitrogênio/análise , Rios/química , Urbanização , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Modelos Teóricos , População Rural , População Urbana , Qualidade da Água
7.
Ambio ; 44(7): 635-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25698057

RESUMO

The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10,000 kg N km(-2) year(-1) for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.


Assuntos
Monitoramento Ambiental/métodos , Lagos/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Política Ambiental/legislação & jurisprudência , Poluição Química da Água/prevenção & controle
8.
Sci Total Environ ; 505: 376-84, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461039

RESUMO

Due to a rapid increase in human population and development of neighborhood economy over the last few decades, nitrogen (N) and other nutrient inputs in Lake Dianchi drainage basin have increased dramatically, changing the lake's trophic classification from oligotrophic to eutrophic. Although human activities are considered as main causes for the degradation of water quality in the lake, a numerical analysis of the share of the effect of different anthropogenic factors is still largely unexplored. We use the net anthropogenic N input (NANI) method to estimate human-induced N inputs to the drainage basin from 1980 to 2010, which covers the period of dramatic socioeconomic and environmental changes. For the last three decades, NANI increased linearly by a factor of three, from 4700 kg km(-2)year(-1) in 1980 to 12,600 kg km(-2)year(-1) in 2010. The main reason for the rise of NANI was due to fertilizer N application as well as human food and animal feed imports. From the perspective of direct effects of food consumption on N inputs, contributions of drivers were estimated in terms of human population and human diet using the Logarithmic Mean Divisia Index (LMDI) factor decomposition method. Although human population density is highly correlated to NANI with a linear correlation coefficient of 0.999, human diet rather than human population is found to be the single largest driver of NANI change, accounting for 47% of total alteration, which illustrates that the role of population density in the change of NANI may be overestimated through simple relational analysis. The strong linear relationships (p<0.01) between NANI and total N concentrations in the lakes over time may indicate that N level in the lake is able to respond significantly to N inputs to the drainage basin.


Assuntos
Monitoramento Ambiental , Lagos/química , Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Eutrofização , Fertilizantes/análise , Atividades Humanas , Fósforo/análise
9.
Ambio ; 43(1): 11-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414801

RESUMO

The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion Euro.


Assuntos
Eutrofização , Países Bálticos , Alocação de Custos , Modelos Econômicos , Oceanos e Mares
11.
Environ Sci Technol ; 47(10): 5199-207, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23631661

RESUMO

The net anthropogenic nitrogen input (NANI) approach is a simple quasi-mass-balance that estimates the human-induced nitrogen inputs to a watershed. Across a wide range of watersheds, NANI has been shown to be a good predictor of riverine nitrogen export. In this paper, we review various methodologies proposed for NANI estimation since its first introduction and evaluate alternative calculations suggested by previous literature. Our work is the first study in which a consistent NANI calculation method is applied across the U.S. watersheds and tested against available riverine N flux estimates. Among the tested methodologies, yield-based estimation of agricultural N fixation (instead of crop area-based) made the largest difference, especially in some Mississippi watersheds where the tile drainage was a significant factor reducing watershed N retention. Across the U.S. watersheds, NANI was particularly sensitive to farm N fertilizer application, cattle N consumption, N fixation by soybeans and alfalfa, and N yield by corn, soybeans, and pasture, although their relative importance varied among different regions.


Assuntos
Nitrogênio/química , Humanos , Estados Unidos
12.
J Environ Manage ; 124: 40-50, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23603774

RESUMO

Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications.


Assuntos
Conservação dos Recursos Naturais , Modelos Teóricos , Calibragem , China , Mudança Climática , Tomada de Decisões , Hidrologia , Método de Monte Carlo , Nitrogênio/análise , Incerteza
13.
Mycologia ; 103(6): 1175-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21700637

RESUMO

Plant establishment patterns suggest that ectomycorrhizal fungal (EMF) inoculant is not found ubiquitously. The role of animal vectors dispersing viable EMF spores is well documented. Here we investigate the role of wind in basidiospore dispersal for six EMF species, Inocybe lacera, Laccaria laccata, Lactarius rufus, Suillus brevipes, Suillus tomentosus and Thelephora americana. Basidiospores adhered to microscope slides placed on three 60 cm transects radiating from sporocarps. Morphological characteristics of species as well as average basidiospore volume were recorded. Number of basidiospores was quantified at specific distances to produce actual dispersal gradients. We found a negative exponential decay model using characteristics for each species fit the field data well. The 95% modeled downwind dispersal distance of basidiospores was calculated for each species. The 95% modeled downwind dispersal distance increased with increasing cap height and decreasing basidiospore volume for the species sampled, with 95% of basidiospores predicted to fall within 58 cm of the cap. Differences in anatomical characteristics of EMF species influence how far basidiospores are dispersed by wind. We discuss the role of wind dispersal leading to patterns of EMF establishment during primary succession.


Assuntos
Micorrizas/fisiologia , Modelos Biológicos , Esporos Fúngicos/fisiologia , Vento
14.
Ambio ; 36(2-3): 124-33, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17520924

RESUMO

We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e., a consistent handling of water fluxes (hydrological simulations) and loading functions (emission data), will facilitate a comparison of riverine nutrient transport between Baltic Sea subbasins that differ substantially. Hot spots of riverine emissions, such as from the rivers Vistula, Oder, and Daugava or from the Danish coast, can be easily demonstrated and the comparison between these hot spots, and the relatively unperturbed rivers in the northern catchments show decisionmakers where remedial actions are most effective to improve the environmental state of the Baltic Sea, and, secondly, what percentage reduction of riverine nutrient loads is possible. The relative difference between measured and simulated fluxes during the validation period was generally small. The cumulative deviation (i.e., relative bias) [Sigma(Simulated - Measured)/Sigma Measured x 100 (%)] from monitored water and nutrient fluxes amounted to +8.2% for runoff, to -2.4% for dissolved inorganic nitrogen, to +5.1% for total nitrogen, to +13% for dissolved inorganic phosphorus and to +19% for total phosphorus. Moreover, the model suggests that point sources for total phosphorus compiled by existing pollution load compilations are underestimated because of inconsistencies in calculating effluent loads from municipalities.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Rios/química , Poluentes da Água/toxicidade , Animais , Países Bálticos , Transporte Biológico , Cidades , Simulação por Computador , Geografia , Modelos Biológicos , Eliminação de Resíduos , Medição de Risco , Estações do Ano , Fatores de Tempo , Movimentos da Água
15.
Environ Pollut ; 141(1): 8-21, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16214276

RESUMO

The impact of the air pollution ozone on soil N dynamics and temporal and spatial patterns of streamflow nitrate flux at the Hubbard Brook Experimental Forest Watershed 6 during the 1964-1994 period was assessed using aggregated (one-cell) and spatially explicit (208-cell) versions of the SImple NItrogen Cycle (SINIC) model. Simulated ozone effects included reductions in stomatal conductance and plant N demand. Model uncertainty was evaluated using Monte Carlo simulations. Ambient ozone was estimated to cause an additional 0.042 gN/m2 per year of nitrate export, 12% of the mean annual streamflow nitrate flux. The 95% credible interval of this estimate was 0.002-0.083 gN/m2 per year, or 0.72-27.3% of the annual flux. The large uncertainty in this estimate suggests that it may be difficult to identify ozone effects on nitrate export utilizing long term data from a single site.


Assuntos
Poluentes Atmosféricos , Nitratos , Oxidantes Fotoquímicos , Ozônio , Poluentes do Solo , Poluentes Químicos da Água , Simulação por Computador , Monitoramento Ambiental/métodos , Agricultura Florestal , Água Doce , Modelos Estatísticos , New York , Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA