Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
Nat Rev Genet ; 20(11): 693-701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31455890

RESUMO

Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.

3.
Hum Mutat ; 40(12): 2230-2238, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31433103

RESUMO

Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications. Variant classifications of nearly 100,000 unique variants were catalogued and compared in a centralized MOLGENIS database. Variants classified by more than one center were labeled as "consensus" when classifications agreed, and shared internationally with LOVD and ClinVar. When classifications opposed (LB/B vs. LP/P), they were labeled "conflicting", while other nonconsensus observations were labeled "no consensus". We assessed our classifications using the InterVar software to compare to ACMG 2015 guidelines, showing 99.7% overall consistency with only 0.3% discrepancies. Differences in classifications between Dutch labs or between Dutch labs and ACMG were mainly present in genes with low penetrance or for late onset disorders and highlight limitations of the current 5-tier classification system. The data sharing boosted the quality of DNA diagnostics in Dutch labs, an initiative we hope will be followed internationally. Recently, a positive match with a case from outside our consortium resulted in a more definite disease diagnosis.

4.
J Mol Diagn ; 21(6): 943-950, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442672

RESUMO

Diagnosis of systemic autoinflammatory diseases (SAIDs) is often difficult to achieve and can delay the start of proper treatments and result in irreversible organ damage. In several patients with dominantly inherited SAID, postzygotic mutations have been detected as the disease-causing gene defects. Mutations with allele frequencies <5% have been detected, even in patients with severe phenotypes. Next-generation sequencing techniques are currently used to detect mutations in SAID-associated genes. However, even if the genomic region is highly covered, this approach is usually not able to distinguish low-grade postzygotic variants from background noise. We, therefore, developed a sensitive deep sequencing assay for mosaicism detection in SAID-associated genes using single-molecule molecular inversion probes. Our results show the accurate detection of postzygotic variants with allele frequencies as low as 1%. The probability of calling mutations with allele frequencies ≥3% exceeds 99.9%. To date, we have detected three patients with mosaicism, two carrying likely pathogenic NLRP3 variants and one carrying a likely pathogenic TNFRSF1A variant with an allele frequency of 1.3%, confirming the relevance of the technology. The assay shown herein is a flexible, robust, fast, cost-effective, and highly reliable method for mosaicism detection; therefore, it is well suited for routine diagnostics.

5.
Nat Commun ; 10(1): 2837, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253775

RESUMO

The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.


Assuntos
Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Análise de Sequência de RNA/métodos , Transcriptoma , Bases de Dados de Ácidos Nucleicos , Humanos , Modelos Genéticos , Análise de Componente Principal , Software , Interface Usuário-Computador
7.
Sci Transl Med ; 10(472)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567928

RESUMO

Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Síndrome do Intestino Irritável/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biodiversidade , Estudos de Casos e Controles , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Modelos Biológicos , Fenótipo , Análise de Componente Principal , Curva ROC , Especificidade da Espécie , Virulência
8.
BMC Bioinformatics ; 19(1): 531, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558531

RESUMO

BACKGROUND: Various algorithms have been developed to predict fetal trisomies using cell-free DNA in non-invasive prenatal testing (NIPT). As basis for prediction, a control group of non-trisomy samples is needed. Prediction accuracy is dependent on the characteristics of this group and can be improved by reducing variability between samples and by ensuring the control group is representative for the sample analyzed. RESULTS: NIPTeR is an open-source R Package that enables fast NIPT analysis and simple but flexible workflow creation, including variation reduction, trisomy prediction algorithms and quality control. This broad range of functions allows users to account for variability in NIPT data, calculate control group statistics and predict the presence of trisomies. CONCLUSION: NIPTeR supports laboratories processing next-generation sequencing data for NIPT in assessing data quality and determining whether a fetal trisomy is present. NIPTeR is available under the GNU LGPL v3 license and can be freely downloaded from https://github.com/molgenis/NIPTeR or CRAN.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Feminino , Humanos , Testes para Triagem do Soro Materno , Valor Preditivo dos Testes , Gravidez
9.
Bioinformatics ; 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30165396

RESUMO

Motivation: The volume and complexity of biological data increases rapidly. Many clinical professionals and biomedical researchers without a bioinformatics background are generating big '-omics' data, but do not always have the tools to manage, process or publicly share these data. Results: Here we present MOLGENIS Research, an open-source web-application to collect, manage, analyze, visualize and share large and complex biomedical data sets, without the need for advanced bioinformatics skills. Availability and implementation: MOLGENIS Research is freely available (open source software). It can be installed from source code (see http://github.com/molgenis), downloaded as a precompiled WAR file (for your own server), setup inside a Docker container (see http://molgenis.github.io), or requested as a Software-as-a-Service subscription. For a public demo instance and complete installation instructions see http://molgenis.org/research.

10.
Eur J Hum Genet ; 26(10): 1478-1489, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29904178

RESUMO

Proximal 6q (6q11-q15) deletions are extremely rare and little is known about their phenotypic consequences. Since parents and caregivers now use social media to seek information on rare disorders, the Chromosome 6 Project has successfully collaborated with a Facebook group to collect data on individuals worldwide. Here we describe a cohort of 20 newly identified individuals and 25 literature cases with a proximal 6q deletion. Microarray results and phenotype data were reported directly by parents via a multilingual online questionnaire. This led to phenotype descriptions for five subregions of proximal 6q deletions; comparing the subgroups revealed that 6q11q14.1 deletions presented less severe clinical characteristics than 6q14.2q15 deletions. Gastroesophageal reflux, tracheo/laryngo/bronchomalacia, congenital heart defects, cerebral defects, seizures, and vision and respiratory problems were predominant in those with 6q14.2q15 deletions. Problems related to connective tissue (hypermobility, hernias and foot deformities) were predominantly seen in deletions including the COL12A1 gene (6q13). Congenital heart defects could be linked to deletions of MAP3K7 (6q15) or TBX18 (6q14.3). We further discuss the role of ten genes known or assumed to be related to developmental delay and/or autism (BAI3, RIMS1, KCNQ5, HTR1B, PHIP, SYNCRIP, HTR1E, ZNF292, AKIRIN2 and EPHA7). The most influential gene on the neurodevelopmental phenotype seems to be SYNCRIP (6q14.3), while deletions that include more than two of these genes led to more severe developmental delay. We demonstrate that approaching individuals via social media and collecting data directly from parents is a successful strategy, resulting in better information to counsel families.

11.
Nat Genet ; 50(4): 493-497, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29610479

RESUMO

Genome-wide association studies have identified thousands of genetic variants that are associated with disease 1 . Most of these variants have small effect sizes, but their downstream expression effects, so-called expression quantitative trait loci (eQTLs), are often large 2 and celltype-specific3-5. To identify these celltype-specific eQTLs using an unbiased approach, we used single-cell RNA sequencing to generate expression profiles of ~25,000 peripheral blood mononuclear cells from 45 donors. We identified previously reported cis-eQTLs, but also identified new celltype-specific cis-eQTLs. Finally, we generated personalized co-expression networks and identified genetic variants that significantly alter co-expression relationships (which we termed 'co-expression QTLs'). Single-cell eQTL analysis thus allows for the identification of genetic variants that impact regulatory networks.

12.
J Med Genet ; 55(8): 530-537, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29599418

RESUMO

BACKGROUND: Hereditary recurrent fevers (HRFs) are rare inflammatory diseases sharing similar clinical symptoms and effectively treated with anti-inflammatory biological drugs. Accurate diagnosis of HRF relies heavily on genetic testing. OBJECTIVES: This study aimed to obtain an experts' consensus on the clinical significance of gene variants in four well-known HRF genes: MEFV, TNFRSF1A, NLRP3 and MVK. METHODS: We configured a MOLGENIS web platform to share and analyse pathogenicity classifications of the variants and to manage a consensus-based classification process. Four experts in HRF genetics submitted independent classifications of 858 variants. Classifications were driven to consensus by recruiting four more expert opinions and by targeting discordant classifications in five iterative rounds. RESULTS: Consensus classification was reached for 804/858 variants (94%). None of the unsolved variants (6%) remained with opposite classifications (eg, pathogenic vs benign). New mutational hotspots were found in all genes. We noted a lower pathogenic variant load and a higher fraction of variants with unknown or unsolved clinical significance in the MEFV gene. CONCLUSION: Applying a consensus-driven process on the pathogenicity assessment of experts yielded rapid classification of almost all variants of four HRF genes. The high-throughput database will profoundly assist clinicians and geneticists in the diagnosis of HRFs. The configured MOLGENIS platform and consensus evolution protocol are usable for assembly of other variant pathogenicity databases. The MOLGENIS software is available for reuse at http://github.com/molgenis/molgenis; the specific HRF configuration is available at http://molgenis.org/said/. The HRF pathogenicity classifications will be published on the INFEVERS database at https://fmf.igh.cnrs.fr/ISSAID/infevers/.

13.
Psychosom Med ; 80(3): 252-262, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29381659

RESUMO

OBJECTIVE: A strong genetic predisposition for type 2 diabetes mellitus (T2DM) may aggravate the negative effects of low socioeconomic position (SEP) in the etiology of the disorder. This study aimed to examine cross-sectional and longitudinal associations and interactions of a genetic risk score (GRS) and SEP with T2DM and to investigate whether clinical and behavioral risk factors can explain these associations and interactions. METHODS: We used data from 13,027 genotyped participants from the Lifelines study. The GRS was based on single-nucleotide polymorphisms genome-wide associated with T2DM and was categorized into tertiles. SEP was measured as educational level. T2DM was based on biological markers, recorded medication use, and self-reports. Cross-sectional and longitudinal associations and interactions between the GRS and SEP on T2DM were examined. RESULTS: The combination of a high GRS and low SEP had the strongest association with T2DM in cross-sectional (odds ratio = 3.84, 95% confidence interval = 2.28-6.46) and longitudinal analyses (hazard ratio = 2.71, 1.39-5.27), compared with a low GRS and high SEP. Interaction between a high GRS and a low SEP was observed in cross-sectional (relative excess risk due to interaction = 1.85, 0.65-3.05) but not in longitudinal analyses. Clinical and behavioral risk factors mostly explained the observed associations and interactions. CONCLUSIONS: A high GRS combined with a low SEP provides the highest risk for T2DM. These factors also exacerbated each other's impact cross-sectionally but not longitudinally. Preventive measures should target individual and contextual factors of this high-risk group to reduce the risk of T2DM.

14.
Aging Cell ; 17(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29120091

RESUMO

Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network. Mice were given a lifelong ad libitum low-fat or high-fat sucrose diet and were further divided into sedentary and running-wheel groups. At 6, 12, 18 and 24 months, muscle weight, triglyceride content and mitochondrial respiratory flux were analysed. Subsequently, transcriptome was measured by RNA-Seq and proteome by targeted LC-MS/MS analysis with 13 C-labelled standards. In the sedentary groups, mitochondrial respiratory flux declined with age. Voluntary running protected the mitochondrial respiratory flux until 18 months of age. Beyond this time point, all groups converged. Regulation Analysis of flux, proteome and transcriptome showed that the decline of flux was equally regulated at the proteomic and at the metabolic level, while regulation at the transcriptional level was marginal. Proteomic regulation was most prominent at the beginning and at the end of the pathway, namely at the pyruvate dehydrogenase complex and at the synthesis and transport of ATP. Further proteomic regulation was scattered across the entire pathway, revealing an effective multisite regulation. Finally, reactions regulated at the protein level were highly overlapping between the four experimental groups, suggesting a common, post-transcriptional mechanism of muscle aging.

15.
Hum Mutat ; 39(3): 333-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266534

RESUMO

Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.

16.
Bioinformatics ; 33(22): 3627-3634, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036577

RESUMO

Motivation: Biobanks are indispensable for large-scale genetic/epidemiological studies, yet it remains difficult for researchers to determine which biobanks contain data matching their research questions. Results: To overcome this, we developed a new matching algorithm that identifies pairs of related data elements between biobanks and research variables with high precision and recall. It integrates lexical comparison, Unified Medical Language System ontology tagging and semantic query expansion. The result is BiobankUniverse, a fast matchmaking service for biobanks and researchers. Biobankers upload their data elements and researchers their desired study variables, BiobankUniverse automatically shortlists matching attributes between them. Users can quickly explore matching potential and search for biobanks/data elements matching their research. They can also curate matches and define personalized data-universes. Availability and implementation: BiobankUniverse is available at http://biobankuniverse.com or can be downloaded as part of the open source MOLGENIS suite at http://github.com/molgenis/molgenis. Contact: m.a.swertz@rug.nl. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Software , Algoritmos
17.
Pediatrics ; 140(4)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28939701

RESUMO

BACKGROUND: Rapid diagnostic whole-genome sequencing has been explored in critically ill newborns, hoping to improve their clinical care and replace time-consuming and/or invasive diagnostic testing. A previous retrospective study in a research setting showed promising results with diagnoses in 57%, but patients were highly selected for known and likely Mendelian disorders. The aim of our prospective study was to assess the speed and yield of rapid targeted genomic diagnostics for clinical application. METHODS: We included 23 critically ill children younger than 12 months in ICUs over a period of 2 years. A quick diagnosis could not be made after routine clinical evaluation and diagnostics. Targeted analysis of 3426 known disease genes was performed by using whole-genome sequencing data. We measured diagnostic yield, turnaround times, and clinical consequences. RESULTS: A genetic diagnosis was obtained in 7 patients (30%), with a median turnaround time of 12 days (ranging from 5 to 23 days). We identified compound heterozygous mutations in the EPG5 gene (Vici syndrome), the RMND1 gene (combined oxidative phosphorylation deficiency-11), and the EIF2B5 gene (vanishing white matter), and homozygous mutations in the KLHL41 gene (nemaline myopathy), the GFER gene (progressive mitochondrial myopathy), and the GLB1 gene (GM1-gangliosidosis). In addition, a 1p36.33p36.32 microdeletion was detected in a child with cardiomyopathy. CONCLUSIONS: Rapid targeted genomics combined with copy number variant detection adds important value in the neonatal and pediatric intensive care setting. It led to a fast diagnosis in 30% of critically ill children for whom the routine clinical workup was unsuccessful.


Assuntos
Diagnóstico Tardio/prevenção & controle , Doenças Genéticas Inatas/diagnóstico , Genômica/métodos , Terapia Intensiva Neonatal/métodos , Análise de Sequência de DNA/métodos , Estado Terminal , Feminino , Seguimentos , Doenças Genéticas Inatas/genética , Marcadores Genéticos , Humanos , Recém-Nascido , Masculino , Mutação , Projetos Piloto , Estudos Prospectivos , Fatores de Tempo
18.
Eur J Hum Genet ; 25(7): 877-885, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28401901

RESUMO

Despite the recent explosive rise in number of genetic markers for complex disease traits identified in genome-wide association studies, there is still a large gap between the known heritability of these traits and the part explained by these markers. To gauge whether this 'heritability gap' is closing, we first identified genome-wide significant SNPs from the literature and performed replication analyses for 32 highly relevant traits from five broad disease areas in 13 436 subjects of the Lifelines Cohort. Next, we calculated the variance explained by multi-SNP genetic risk scores (GRSs) for each trait, and compared it to their broad- and narrow-sense heritabilities captured by all common SNPs. The majority of all previously-associated SNPs (median=75%) were significantly associated with their respective traits. All GRSs were significant, with unweighted GRSs generally explaining less phenotypic variance than weighted GRSs, for which the explained variance was highest for height (15.5%) and varied between 0.02 and 6.7% for the other traits. Broad-sense common-SNP heritability estimates were significant for all traits, with the additive effect of common SNPs explaining 48.9% of the variance for height and between 5.6 and 39.2% for the other traits. Dominance effects were uniformly small (0-1.5%) and not significant. On average, the variance explained by the weighted GRSs accounted for only 10.7% of the common-SNP heritability of the 32 traits. These results indicate that GRSs may not yet be ready for accurate personalized prediction of complex disease traits limiting widespread adoption in clinical practice.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Fenótipo , Característica Quantitativa Herdável , Contagem de Células Sanguíneas , Pressão Sanguínea/genética , Genes Dominantes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/normas , Frequência Cardíaca/genética , Humanos , Polimorfismo de Nucleotídeo Único , Respiração/genética
19.
PLoS One ; 12(2): e0171324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192439

RESUMO

In high-throughput molecular profiling studies, genotype labels can be wrongly assigned at various experimental steps; the resulting mislabeled samples seriously reduce the power to detect the genetic basis of phenotypic variation. We have developed an approach to detect potential mislabeling, recover the "ideal" genotype and identify "best-matched" labels for mislabeled samples. On average, we identified 4% of samples as mislabeled in eight published datasets, highlighting the necessity of applying a "data cleaning" step before standard data analysis.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Animais , Simulação por Computador , Genômica/métodos , Genótipo , Humanos , Fenótipo , Reprodutibilidade dos Testes
20.
Genome Biol ; 18(1): 6, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28093075

RESUMO

We present Gene-Aware Variant INterpretation (GAVIN), a new method that accurately classifies variants for clinical diagnostic purposes. Classifications are based on gene-specific calibrations of allele frequencies from the ExAC database, likely variant impact using SnpEff, and estimated deleteriousness based on CADD scores for >3000 genes. In a benchmark on 18 clinical gene sets, we achieve a sensitivity of 91.4% and a specificity of 76.9%. This accuracy is unmatched by 12 other tools. We provide GAVIN as an online MOLGENIS service to annotate VCF files and as an open source executable for use in bioinformatic pipelines. It can be found at http://molgenis.org/gavin .


Assuntos
Biologia Computacional/métodos , Variação Genética , Software , Frequência do Gene , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA