Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31587869

RESUMO

Mechanically activated (MA) ion channels convert physical forces into electrical signals. Despite the importance of this function, the involvement of mechanosensitive ion channels in human disease is poorly understood. Here we report heterozygous missense mutations in the gene encoding the MA ion channel TMEM63A that result in an infantile disorder resembling a hypomyelinating leukodystrophy. Four unrelated individuals presented with congenital nystagmus, motor delay, and deficient myelination on serial scans in infancy, prompting the diagnosis of Pelizaeus-Merzbacher (like) disease. Genomic sequencing revealed that all four individuals carry heterozygous missense variants in the pore-forming domain of TMEM63A. These variants were confirmed to have arisen de novo in three of the four individuals. While the physiological role of TMEM63A is incompletely understood, it is highly expressed in oligodendrocytes and it has recently been shown to be a MA ion channel. Using patch clamp electrophysiology, we demonstrated that each of the modeled variants result in strongly attenuated stretch-activated currents when expressed in naive cells. Unexpectedly, the clinical evolution of all four individuals has been surprisingly favorable, with substantial improvements in neurological signs and developmental progression. In the three individuals with follow-up scans after 4 years of age, the myelin deficit had almost completely resolved. Our results suggest a previously unappreciated role for mechanosensitive ion channels in myelin development.

2.
Bioinformatics ; 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134279

RESUMO

SUMMARY: We describe a novel computational method for genotyping repeats using sequence graphs. This method addresses the long-standing need to accurately genotype medically important loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter, that uses this method to perform targeted genotyping of a broad class of such loci. AVAILABILITY AND IMPLEMENTATION: ExpansionHunter is implemented in C++ and is available under the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are available at https://github.com/Illumina/ExpansionHunter/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Am J Hum Genet ; 104(5): 925-935, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609

RESUMO

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.

4.
J Med Genet ; 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023718

RESUMO

Up to 350 million people worldwide suffer from a rare disease, and while the individual diseases are rare, in aggregate they represent a substantial challenge to global health systems. The majority of rare disorders are genetic in origin, with children under the age of five disproportionately affected. As these conditions are difficult to identify clinically, genetic and genomic testing have become the backbone of diagnostic testing in this population. In the last 10 years, next-generation sequencing technologies have enabled testing of multiple disease genes simultaneously, ranging from targeted gene panels to exome sequencing (ES) and genome sequencing (GS). GS is quickly becoming a practical first-tier test, as cost decreases and performance improves. A growing number of studies demonstrate that GS can detect an unparalleled range of pathogenic abnormalities in a single laboratory workflow. GS has the potential to deliver unbiased, rapid and accurate molecular diagnoses to patients across diverse clinical indications and complex presentations. In this paper, we discuss clinical indications for testing and historical testing paradigms. Evidence supporting GS as a diagnostic tool is supported by superior genomic coverage, types of pathogenic variants detected, simpler laboratory workflow enabling shorter turnaround times, diagnostic and reanalysis yield, and impact on healthcare.

5.
Genet Med ; 21(9): 2161, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30760893

RESUMO

This Article was originally published under Nature Research's License to Publish, but has now been made available under a [CC BY-NC-ND 4.0] license. The PDF and HTML versions of the Article have been modified accordingly.

6.
Neurology ; 92(11): e1225-e1237, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737337

RESUMO

OBJECTIVE: To describe the leukodystrophy caused by pathogenic variants in LARS2 and KARS, encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively. METHODS: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in LARS2 or KARS. Clinical information, brain MRIs, and postmortem brain autopsy data were collected. We assessed aminoacylation activities of purified mutant recombinant mitochondrial leucyl tRNA synthase and performed aminoacylation assays on patients' lymphoblasts and fibroblasts. RESULTS: Patients had a combination of early-onset deafness and later-onset neurologic deterioration caused by progressive brain white matter abnormalities on MRI. Female patients with LARS2 pathogenic variants had premature ovarian failure. In 2 patients, MRI showed additional signs of early-onset vascular abnormalities. In 2 other patients with LARS2 and KARS pathogenic variants, magnetic resonance spectroscopy revealed elevated white matter lactate, suggesting mitochondrial disease. Pathology in one patient with LARS2 pathogenic variants displayed evidence of primary disease of oligodendrocytes and astrocytes with lack of myelin and deficient astrogliosis. Aminoacylation activities of purified recombinant mutant leucyl tRNA synthase showed a 3-fold loss of catalytic efficiency. Aminoacylation assays on patients' lymphoblasts and fibroblasts showed about 50% reduction of enzyme activity. CONCLUSION: This study adds LARS2 and KARS pathogenic variants as gene defects that may underlie deafness, ovarian failure, and leukodystrophy with mitochondrial signature. We discuss the specific MRI characteristics shared by leukodystrophies caused by mitochondrial tRNA synthase defects. We propose to add aminoacylation assays as biochemical diagnostic tools for leukodystrophies.

7.
Genet Med ; 21(8): 1797-1807, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30679821

RESUMO

PURPOSE: Haploinsufficiency of USP7, located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. METHODS: We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. RESULTS: The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. CONCLUSION: The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.

8.
Neurology ; 92(6): e587-e593, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30635494

RESUMO

OBJECTIVE: To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS: Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS: All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS: GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.

9.
Genet Med ; 21(7): 1652-1656, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568308

RESUMO

PURPOSE: Brain malformations caused by 17p13.3 deletions include lissencephaly with deletions of the larger Miller-Dieker syndrome region or smaller deletions of only PAFAH1B1, white matter changes, and a distinct syndrome due to deletions including YWHAE and CRK but sparing PAFAH1B1. We sought to understand the significance of 17p13.3 deletions between the YWHAE/CRK and PAFAH1B1 loci. METHODS: We analyzed the clinical features of six individuals from five families with 17p13.3 deletions between and not including YWHAE/CRK and PAFAH1B1 identified among individuals undergoing clinical chromosomal microarray testing or research genome sequencing. RESULTS: Five individuals from four families had multifocal white matter lesions while a sixth had a normal magnetic resonance image. A combination of our individuals and a review of those in the literature with white matter changes and deletions in this chromosomal region narrows the overlapping region for this brain phenotype to ~345 kb, including 11 RefSeq genes, with RTN4RL1 haploinsufficiency as the best candidate for causing this phenotype. CONCLUSION: While previous literature has hypothesized dysmorphic features and white matter changes related to YWHAE, our cohort contributes evidence to the presence of additional genetic changes within 17p13.3 required for proper brain development.

10.
Genet Med ; 21(8): 1781-1789, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30568310

RESUMO

PURPOSE: To identify the economic impact of pediatric patients with clinical indications of genetic disease (GD) on the US health-care system. METHODS: Using the 2012 Kids' Inpatient Database, we identified pediatric inpatient discharges with International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes linked to genetic disease, including well-established genetic disorders, neurological diseases, birth defects, and other physiological or functional abnormalities with a genetic basis. Cohort characteristics and health-care utilization measures were analyzed. Discharges with a GD-associated primary diagnosis were used to estimate the minimum burden; discharges with GD-associated primary or secondary codes established the maximum burden. RESULTS: Of 5.85 million weighted discharges, 2.6-14% included GD-associated ICD-9-CM codes. For these discharges, mean total costs were $16,000-77,000 higher (P < 0.0001) in neonates and $12,000-17,000 higher (P < 0.0001) in pediatric patients compared with background, corresponding to significantly higher total charges and lengths of stay. Aggregate total charges for suspected GD accounted for $14 to $57 billion (11-46%) of the "national bill" for pediatric patients in 2012. CONCLUSION: Pediatric inpatients with diagnostic codes linked to genetic disease have a significant and disproportionate impact on resources and costs in the US health-care system.

11.
BMC Evol Biol ; 18(1): 160, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382896

RESUMO

BACKGROUND: Micro RNAs (miRNAs) and piwi interacting RNAs (piRNAs), along with the more ancient eukaryotic endogenous small interfering RNAs (endo-siRNAs) constitute the principal components of the RNA interference (RNAi) repertoire of most animals. RNAi in non-bilaterians - sponges, ctenophores, placozoans and cnidarians - appears to be more diverse than that of bilaterians, and includes structurally variable miRNAs in sponges, an enormous number of piRNAs in cnidarians and the absence of miRNAs in ctenophores and placozoans. RESULTS: Here we identify thousands of endo-siRNAs and piRNAs from the sponge Amphimedon queenslandica, the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis using a computational approach that clusters mapped small RNA sequences and annotates each cluster based on the read length and relative abundance of the constituent reads. This approach was validated on 11 small RNA libraries in Drosophila melanogaster, demonstrating the successful annotation of RNAi-associated loci with properties consistent with previous reports. In the non-bilaterians we uncover seven new miRNAs from Amphimedon and four from Nematostella as well as sub-populations of candidate cis-natural antisense transcript (cis-NAT) endo-siRNAs. We confirmed the absence of miRNAs in Mnemiopsis but detected an abundance of endo-siRNAs in this ctenophore. Analysis of putative piRNA structure suggests that conserved localised secondary structures in primary transcripts may be important for the production of mature piRNAs in Amphimedon and Nematostella, as is also the case for endo-siRNAs. CONCLUSION: Together, these findings suggest that the last common ancestor of extant animals did not have the entrained RNAi system that typifies bilaterians. Instead it appears that bilaterians, cnidarians, ctenophores and sponges express unique repertoires and combinations of miRNAs, piRNAs and endo-siRNAs.

12.
Mol Genet Metab ; 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30473481

RESUMO

Primary mitochondrial complex I deficiency is the most common defect of the mitochondrial respiratory chain. It is caused by defects in structural components and assembly factors of this large protein complex. Mutations in the assembly factor NDUFAF5 are rare, with only five families reported to date. This study provides clinical, biochemical, molecular and functional data for four unrelated additional families, and three novel pathogenic variants. Three cases presented in infancy with lactic acidosis and classic Leigh syndrome. One patient, however, has a milder phenotype, with symptoms starting at 27 months and a protracted clinical course with improvement and relapsing episodes. She is homozygous for a previously reported mutation, p.Met279Arg and alive at 19 years with mild neurological involvement, normal lactate but abnormal urine organic acids. We found the same mutation in one of our severely affected patients in compound heterozygosity with a novel p.Lys52Thr mutation. Both patients with p.Met279Arg are of Taiwanese descent and had severe hyponatremia. Our third and fourth patients, both Caucasian, shared a common, newly described, missense mutation p.Lys109Asn which we show induces skipping of exon 3. Both Caucasian patients were compound heterozygotes, one with a previously reported Ashkenazi founder mutation while the other was negative for additional exonic variants. Whole genome sequencing followed by RNA studies revealed a novel deep intronic variant at position c.223-907A>C inducing an exonic splice enhancer. Our report adds significant new information to the mutational spectrum of NDUFAF5, further delineating the phenotypic heterogeneity of this mitochondrial defect.

13.
Genet Med ; 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30293986

RESUMO

PURPOSE: Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test. METHODS: We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases. RESULTS: We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs. CONCLUSION: Robust identification of CNVs by GS is possible within a clinical testing environment.

14.
Am J Hum Genet ; 103(4): 602-611, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30269814

RESUMO

Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.

15.
Am J Med Genet A ; 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30246918

RESUMO

Osteogenesis imperfecta (OI) is a family of heritable disorders of bone fragility. Most individuals with OI have mutations in the genes encoding type I collagen; at least 17 other genes have been associated with OI. Biallelic loss-of-function mutations in WNT1 cause severe OI. Heterozygous missense variants in WNT1 are responsible for early-onset osteoporosis with variable bone phenotypes. Herein, we report a third-generation family with four affected individuals, some presenting with multiple low-impact fractures in childhood and others presenting with early-onset osteoporosis without a striking fracture history. A WNT1 variant (c. 1051 > C; p.Trp351Arg) was identified in the proband and segregated with a bone phenotype in three additional family members, consistent with autosomal dominant inheritance. In the proband, whole genome sequencing also revealed a de novo duplication (434 kb) of 22q11.2 that involves 25 genes, 4 of which are associated with human disease when haploinsufficient. Though smaller than the typical (1.5 Mb) 22q11.2 duplication, the duplication in the proband may be responsible for additional nonosseous aspects of his phenotype (hypotonia, developmental delay, small genitalia, strabismus, and depression in preadolescence). This case demonstrates the variability of bone phenotype conferred by a WNT1 variant and extends the spectrum of bone phenotypes associated with heterozygous WNT1 mutations.

16.
J Child Neurol ; 33(10): 642-650, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29882456

RESUMO

Leukodystrophies and genetic leukoencephalopathies are a heterogeneous group of heritable disorders that affect the glial-axonal unit. As more patients with unsolved leukodystrophies and genetic leukoencephalopathies undergo next generation sequencing, causative mutations in genes leading to central hypomyelination are being identified. Two such individuals presented with arthrogryposis multiplex congenita, congenital hypomyelinating neuropathy, and central hypomyelination with early respiratory failure. Whole exome sequencing identified biallelic mutations in the CNTNAP1 gene: homozygous c.1163G>C (p.Arg388Pro) and compound heterozygous c.967T>C (p.Cys323Arg) and c.319C>T (p.Arg107*). Sural nerve and quadriceps muscle biopsies demonstrated progressive, severe onion bulb and axonal pathology. By ultrastructural evaluation, septate axoglial paranodal junctions were absent from nodes of Ranvier. Serial brain magnetic resonance images revealed hypomyelination, progressive atrophy, and reduced diffusion in the globus pallidus in both patients. These 2 families illustrate severe progressive peripheral demyelinating neuropathy due to the absence of septate paranodal junctions and central hypomyelination with neurodegeneration in CNTNAP1-associated arthrogryposis multiplex congenita.

17.
Am J Med Genet A ; 176(6): 1443-1448, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29696782

RESUMO

Early-onset epileptic encephalopathies (EOEEs) are a genetically heterogeneous collection of severe epilepsies often associated with psychomotor regression. Mutations in SZT2, a known seizure threshold regulator gene, are a newly identified cause of EOEE. We present an individual with EOEE, macrocephaly, and developmental regression with compound heterozygous mutations in SZT2 as identified by whole exome sequencing. Serial imaging characterized the novel finding of progressive loss of central myelination. This case expands our clinical understanding of the SZT2-phenotype and emphasizes the role of this gene in the diagnostic investigation for EOEE and leukoencephalopathies.

18.
Am J Med Genet A ; 176(4): 997-1000, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575628

RESUMO

Congenital sodium diarrhea is a rare and life-threatening disorder characterized by a severe, secretory diarrhea containing high concentrations of sodium, leading to hyponatremia and metabolic acidosis. It may occur in isolation or in association with systemic features such as facial dysmorphism, choanal atresia, imperforate anus, and corneal erosions. Mutations in the serine protease inhibitor, Kunitz-Type 2 (SPINT2) gene have been associated with congenital sodium diarrhea and additional syndromic features. We present a child with congenital sodium diarrhea, cleft lip and palate, corneal erosions, optic nerve coloboma, and intermittent exotropia who was found to have biallelic mutations in SPINT2. One mutation, c.488A > G, predicting p.(Tyr163Cys), has been previously associated with a syndromic form of congenital sodium diarrhea. The other mutation, c.166_167dupTA, predicting p.(Asn57Thrfs*24) has not previously been reported and is likely a novel pathogenic variant for this disorder. We found only one other report of an optic nerve coloboma associated with SPINT2 mutations and this occurred in a patient with congenital tufting enteropathy. Our patient confirms an association of ocular coloboma with presumed loss of SPINT2 function.

19.
Hum Mutat ; 39(2): 281-291, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193635

RESUMO

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.

20.
RNA ; 24(4): 597-608, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29246928

RESUMO

MicroRNAs (miRNAs) are highly conserved ∼22 nt small noncoding RNAs that bind partially complementary sequences in target transcripts. MicroRNAs regulate both translation and transcript stability, and play important roles in development, cellular homeostasis, and disease. There are limited approaches available to agnostically identify microRNA targets transcriptome-wide, and methods using miRNA mimics, which in principle identify direct miRNA:transcript pairs, have low sensitivity and specificity. Here, we describe a novel method to identify microRNA targets using miR-29b mimics containing 3-cyanovinylcarbazole (CNVK), a photolabile nucleoside analog. We demonstrate that biotin-tagged, CNVK-containing miR-29b (CNVK-miR-29b) mimics are nontoxic in cell culture, associate with endogenous mammalian Argonaute2, are sensitive for known targets and recapitulate endogenous transcript destabilization. Partnering CNVK-miR-29b with ultra-low-input RNA sequencing, we recover ∼40% of known miR-29b targets and find conservation of the focal adhesion and apoptotic target pathways in mouse and human. We also identify hundreds of novel targets, including NRAS, HOXA10, and KLF11, with a validation rate of 71% for a subset of 73 novel target transcripts interrogated using a high-throughput luciferase assay. Consistent with previous reports, we show that both endogenous miR-29b and CNVK-miR-29b are trafficked to the nucleus, but find no evidence of nuclear-specific miR-29b transcript binding. This may indicate that miR-29b nuclear sequestration is a regulatory mechanism in itself. We suggest that CNVK-containing small RNA mimics may find applicability in other experimental models.


Assuntos
Carbazóis/química , MicroRNAs/metabolismo , Nitrilos/química , RNA Antissenso/genética , Compostos de Vinila/química , Animais , Apoptose/fisiologia , Proteínas Argonauta/química , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Adesões Focais/metabolismo , GTP Fosfo-Hidrolases/química , Proteínas de Homeodomínio/química , Humanos , Proteínas de Membrana/química , Camundongos , MicroRNAs/química , Proteínas Repressoras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA