Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 50(4): 559-571, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29632382

RESUMO

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

3.
Sci Data ; 4: 170179, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257133

RESUMO

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Variação Genética , Grupo com Ancestrais do Continente Europeu , Humanos
4.
Nature ; 536(7614): 41-47, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27398621

RESUMO

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Alelos , Análise Mutacional de DNA , Europa (Continente)/etnologia , Exoma , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Tamanho da Amostra
5.
J Biomed Nanotechnol ; 7(1): 203-4, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21485871

RESUMO

Nanotoxicology link between India and European Nations (NanoLINEN) is a consortium of 7 European laboratories and Indian Institute of Toxicology Research (CSIR Laboratory) from India to strengthen the research ties in the area of Nanomaterial Toxicology. The goal of this project is to develop robust risk assessment methodologies that will be useful for the community manufacturing and using nano-products.


Assuntos
Cooperação Internacional , Modelos Organizacionais , Nanotecnologia/organização & administração , Toxicologia/organização & administração , União Europeia , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA