RESUMO
The structural flexibility at three substitution sites in LaFeAsO enabled investigation of the relation between superconductivity and structural parameters over a wide range of crystal compositions. Substitutions of Nd for La, Sb or P for As, and F or H for O were performed. All these substitutions modify the local structural parameters, while the F/H-substitution also changes band filling. It was found that the superconducting transition temperature [Formula: see text] is strongly affected by the pnictogen height [Formula: see text] from the Fe-plane that controls the electron correlation strength and the size of the [Formula: see text] hole Fermi surface (FS). With increasing [Formula: see text], weak coupling BCS superconductivity switches to the strong coupling non-BCS one where electron correlations and the [Formula: see text] hole FS may be important.
RESUMO
We performed temperature- and doping-dependent high-resolution Raman spectroscopy experiments on YBa_{2}Cu_{3}O_{7-δ} to study B_{1g} phonons. The temperature dependence of the real part of the phonon self-energy shows a distinct kink at T=T_{B1g} above T_{c} due to softening, in addition to the one due to the onset of the superconductivity. T_{B1g} is clearly different from the pseudogap temperature with a maximum in the underdoped region and resembles charge density wave onset temperature, T_{CDW}. We attribute the B_{1g}-phonon softening to an energy gap on the Fermi surface induced by a charge density wave order, which is consistent with the results of a recent electronic Raman scattering study. Our work demonstrates a way to investigate Fermi surface instabilities above T_{c} via phonon Raman studies.
RESUMO
The optical studies of high-temperature superconducting cuprates (HTSC) are reviewed. From the doping dependence of room temperature spectra, a dramatic change of the electronic state from a Mott (charge transfer) insulator to a Fermi liquid has been revealed. Additionally, the unusual 2D nature of the electronic state has been found. The temperature dependence of the optical spectra provided a rich source of information on the pseudogap, superconducting gap, Josephson plasmon, transverse Josephson plasma mode and precursory superconductivity. Among these issues, Josephson plasmons and transverse Josephson plasma mode were experimentally discovered by optical measurements, and thus are unique to HTSC. The effect of the spin/charge stripe order is also unique to HTSC, reflecting the conducting nature of the stripe order in this system. The pair-breaking due to the stripe order seems stronger in the out-of-plane direction than in the in-plane one.
RESUMO
The superconductivity precursor phenomena in high temperature cuprate superconductors is studied by direct measurements of the superconducting condensate with the use of the c-axis optical conductivity of YBa2(Cu1-xZnx)3Oy for several doping levels (p) as well as for several Zn concentrations. Both the real and imaginary parts of the optical conductivity clearly show that the superconducting carriers persist up to the high temperatures Tp that is higher than the critical temperature Tc but lower than the pseudogap temperature T*. Tp increases with reducing doping level like T*, but decreases with Zn substitution unlike T*.
RESUMO
The possibility that a pairing boson might act as the 'glue' to bind electrons into a Cooper pair in superconductors with a high critical temperature (T(c)) is being actively pursued in condensed-matter physics. Gweon et al. claim that there is a large and unusual oxygen-isotope effect on the electronic structure, indicating that phonons have a special importance in high-temperature superconductors. However, we are unable to detect this unusual oxygen-isotope effect in new data collected under almost identical material and experimental conditions. Our findings point towards a more conventional influence of phonons in these materials.