Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Respir Med ; 173: 106175, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33032168

RESUMO

BACKGROUND: Frequency of moderate and severe chronic obstructive pulmonary disease exacerbations is an important endpoint in clinical trials, but makes them large and lengthy when powered to evaluate it. We aimed to develop a composite endpoint (COPDCompEx) that could predict treatment effect on exacerbations, enabling the design of shorter early phase clinical trials requiring fewer patients. METHODS: In this post hoc analysis, data from 20 randomized controlled trials were used to develop and test COPDCompEx. Diary events were tested against predefined threshold values for peak expiratory flow, reliever medication use, and symptoms. A COPDCompEx event was defined as first occurrence of a diary event, a moderate or severe exacerbation, or a study dropout. Ratios of event frequency, treatment effect and future trial sample size were compared between COPDCompEx and moderate and severe exacerbations. FINDINGS: At 3 months, the proportion of patients experiencing COPDCompEx events increased over 3-fold versus exacerbations alone. All components contributed to COPDCompEx event rate. Treatment effects at 3 months were closely matched between COPDCompEx and exacerbations, and the large net gain in power substantially reduced the required sample size. INTERPRETATION: COPDCompEx may be used to predict treatment effect on moderate and severe exacerbations of chronic obstructive pulmonary disease. This may enable the design of shorter Phase 2 clinical trials requiring fewer patients when compared with current exacerbation studies, with exacerbations as a key Phase 3 endpoint. This would, therefore, allow more efficient decision-making with reduced burden and risk to study participants.

2.
Respir Med ; 173: 106185, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33035747

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by abnormal epithelial repair resulting in a hypercoagulable state with intra-alveolar accumulation of fibrin and alveolar basement membrane destruction. This study aimed to investigate if the combination of two serological biomarkers evaluating these pathological processes could improve the prediction of mortality risk compared to single biomarkers. METHODS: Matrix metalloproteinase-mediated degradation of the type IV collagen α3 chain (C4Ma3), located in the alveolar basement membrane, and plasmin-mediated degradation of crosslinked fibrin (X-FIB), an end-product of fibrinogen, were assessed serologically in a subset of the ECLIPSE cohort (n = 982). Biomarker data were dichotomized into high versus low at the median. Cox regression and Kaplan-Meier curves were used to analyze the predictive value of having one or two high biomarkers for all-cause mortality over two years. RESULTS: COPD participants with high levels of two biomarkers were at significantly higher risk of all-cause mortality with a hazard ratio of 7.66 (95% CI 1.75-33.48; p = 0.007) while participants with one high biomarker were not at significantly higher risk (HR 3.79 [95% CI 0.85-16.94]; p = 0.08). CONCLUSIONS: A combination of serological biomarkers of alveolar basement membrane destruction and clot resolution was predictive of all-cause mortality in COPD. The combination of two different pathological aspects may strengthen prognostic accuracy and could be used in conjunction with clinical assessment to guide treatment decisions.

3.
Age Ageing ; 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894757

RESUMO

RATIONALE: chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and common in older adults. The BODE Index is the most recognised mortality risk score in COPD but includes a 6-minute walk test (6MWT) that is seldom available in practise; the BODE Index may be better adopted if the 6MWT was replaced. OBJECTIVES: we investigated whether a modified BODE Index in which 6MWT was replaced by an alternative measure of physical capacity, specifically the short physical performance battery (SPPB) or components, retained its predictive ability for mortality in individuals with COPD. METHODS: we analysed 630 COPD patients from the ERICA cohort study for whom UK Office for National Statistics verified mortality data were available. Variables tested at baseline included spirometry, 6MWT, SPPB and its components (4-m gait speed test [4MGS], chair stand and balance). Predictive models were developed using stratified multivariable Cox regression, and assessed by C-indices and calibration plots with 10-fold cross-validation and replication. RESULTS: during median 2 years of follow-up, 60 (10%) individuals died. There was no significant difference between the discriminative ability of BODE6MWT (C-index 0.709, 95% confidence interval [CI], 0.680-0.737), BODESPPB (C-index 0.683, 95% CI, 0.647-0.712), BODE4MGS (C-index 0.676, 95% CI, 0.643-0.700) and BODEBALANCE (C-index 0.686, 95% CI, 0.651-0.713) for predicting mortality. CONCLUSIONS: the SPPB, and its 4MGS and balance components, can potentially be used as an alternative to the 6MWT in the BODE Index without significant loss of predictive ability in all-cause mortality.

4.
Eur Respir J ; 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972986

RESUMO

INTRODUCTION: The COPD bacteriome associates with disease severity, exacerbations, and mortality. While COPD patients are susceptible to fungal sensitisation, the role of the fungal mycobiome remains uncertain. METHODS: We report the largest multicenter evaluation of the COPD airway mycobiome to date including participants from Asia (Singapore and Malaysia) and the United Kingdom (Scotland) when stable (n=337) and during exacerbations (n=66) as well as non-diseased controls (n=47). Longitudinal mycobiome analyses performed during and following COPD exacerbations (n=34) were examined in terms of exacerbation frequency, two-year mortality, and the occurrence of serum specific-IgE against selected fungi. RESULTS: A distinct mycobiome profile is observed in COPD compared to controls evidenced by increased alpha diversity (Shannon-index) (p<0.001). Significant airway mycobiome differences including greater inter-fungal interaction (by co-occurrence) characterise very frequent COPD exacerbators (≥3 exacerbations per year) (PERMANOVA, adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups, (1) with increased symptoms (CAT score) and Saccharomyces dominance and (2) with very frequent exacerbations and higher mortality characterised by Aspergillus, Penicillium and Curvularia with a concomitant increase in serum specific IgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher two-year mortality. CONCLUSION: The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.

5.
J Nucl Med ; 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948678

RESUMO

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and monitor disease progression and treatment outcomes in lung diseases, disorders that interfere with gas exchange through alterations of the pulmonary parenchyma, airways and/or vasculature. To date, however, there are no widely accepted standard acquisition protocols and imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, acquisition protocol and analysis method details were collated from seven PET centers. Based on this information and discussions among the authors, the consensus recommendations reported here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting were reached.

6.
Respir Res ; 21(1): 202, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32731895

RESUMO

BACKGROUND: Lung epithelial damage, activation of the wound healing cascade, and remodeling of the extracellular matrix (ECM) play a major role in chronic obstructive pulmonary disease (COPD). The pro-peptide of type VI collagen has been identified as the hormone endotrophin. Endotrophin has been shown to promote fibrosis and inflammation, whereas von Willebrand factor (VWF) is a crucial part of wound healing initiation. Here, we assessed the released and activated form of VWF and endotrophin, the pro-peptide of type VI collagen, serologically to investigate their association with mortality in COPD subjects alone or in combination. METHODS: One thousand COPD patients with 3 years of clinical follow-up from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort were included. Serum and heparin plasma were collected at 6 months and 1 year, respectively. Competitive ELISA utilizing specific monoclonal antibodies assessed endotrophin/type VI collagen formation (PRO-C6), VWF release (VWF-N), and activated VWF (VWF-A). Biomarker levels were dichotomized into high and low as defined by receiver operating characteristic (ROC) curves based on mortality data. Kaplan-Meier analysis was used to determine hazard ratios for all-cause mortality for biomarkers alone or in combination. RESULTS: High levels of PRO-C6, VWF-A, and VWF-N have previously been shown to be individually associated with a higher risk of mortality with hazard ratios of 5.6 (95% CI 2.4-13.1), 3.7 (1.8-7.6), and 4.6 (2.2-9.6), respectively. The hazard ratios increased when combining the biomarkers: PRO-C6*VWFA 8.8 (2.8-27.7) and PRO-C6*VWFN 13.3 (5.6-32.0). Notably, PRO-C6*VWF-N increased more than 2-fold. CONCLUSION: We demonstrated that by combining two pathological relevant aspects of COPD, tissue remodeling, and wound healing, the predictive value of biomarkers for mortality increased notably.

7.
Respir Res ; 21(1): 166, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611352

RESUMO

BACKGROUND: Identifying patients with COPD at increased risk of poor outcomes is challenging due to disease heterogeneity. Potential biomarkers need to be readily available in real-life clinical practice. Blood eosinophil counts are widely studied but few studies have examined the prognostic value of blood neutrophil counts (BNC). METHODS: In a large population-based COPD registry in the East of Scotland (TARDIS: Tayside Allergic and Respiratory Disease Information System), BNC were compared to measures of disease severity and mortality for up to 15 years follow-up. Potential mechanisms of disease modification by BNC were explored in a nested microbiome substudy. RESULTS: 178,120 neutrophil counts were obtained from 7220 people (mean follow up 9 years) during stable disease periods. Median BNC was 5200cells/µL (IQR 4000-7000cells/µL). Mortality rates among the 34% of patients with elevated BNCs (defined as 6000-15000cells/µL) at the study start were 80% higher (14.0/100 person years v 7.8/100py, P < 0.001) than those with BNC in the normal range (2000-6000cells/µL). People with elevated BNC were more likely to be classified as GOLD D (46% v 33% P < 0.001), have more exacerbations (mean 2.3 v 1.3/year, P < 0.001), and were more likely to have severe exacerbations (13% vs. 5%, P < 0.001) in the following year. Eosinophil counts were much less predictive of these outcomes. In a sub-cohort (N = 276), patients with elevated BNC had increased relative abundance of Proteobacteria and reduced microbiome diversity. CONCLUSION: High BNC may provide a useful indicator of risk of exacerbations and mortality in COPD patients.

8.
Lancet Respir Med ; 8(7): 696-708, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32649918

RESUMO

BACKGROUND: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. METHODS: We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. FINDINGS: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74-1·88] and non-European (1·42 [1·34-1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56-9·72) in European ancestry and 4·83 (3·45-6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79-0·81] vs 0·76 [0·75-0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. INTERPRETATION: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth. FUNDING: US National Institutes of Health, Wellcome Trust.


Assuntos
Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fatores de Risco , Capacidade Vital
9.
Respir Res ; 21(1): 183, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664956

RESUMO

BACKGROUND: Airway bacterial dysbiosis is a feature of chronic obstructive pulmonary disease (COPD). However, there is limited comparative data of the lung microbiome between healthy smokers, non-smokers and COPD. METHODS: We compared the 16S rRNA gene-based sputum microbiome generated from pair-ended Illumina sequencing of 124 healthy subjects (28 smokers and 96 non-smokers with normal lung function), with single stable samples from 218 COPD subjects collected from three UK clinical centres as part of the COPDMAP consortium. RESULTS: In healthy subjects Firmicutes, Bacteroidetes and Actinobacteria were the major phyla constituting 88% of the total reads, and Streptococcus, Veillonella, Prevotella, Actinomyces and Rothia were the dominant genera. Haemophilus formed only 3% of the healthy microbiome. In contrast, Proteobacteria was the most dominant phylum accounting for 50% of the microbiome in COPD subjects, with Haemophilus and Moraxella at genus level contributing 25 and 3% respectively. There were no differences in the microbiome profile within healthy and COPD subgroups when stratified based on smoking history. Principal coordinate analysis on operational taxonomic units showed two distinct clusters, representative of healthy and COPD subjects (PERMANOVA, p = 0·001). CONCLUSION: The healthy and COPD sputum microbiomes are distinct and independent of smoking history. Our results underline the important role for Gammaproteobacteria in COPD.

10.
ISME J ; 14(11): 2748-2765, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32719402

RESUMO

The interaction between airway microbiome and host in chronic obstructive pulmonary disease (COPD) is poorly understood. Here we used a multi-omic meta-analysis approach to characterize the functional signature of airway microbiome in COPD. We retrieved all public COPD sputum microbiome datasets, totaling 1640 samples from 16S rRNA gene datasets and 26 samples from metagenomic datasets from across the world. We identified microbial taxonomic shifts using random effect meta-analysis and established a global classifier for COPD using 12 microbial genera. We inferred the metabolic potentials for the airway microbiome, established their molecular links to host targets, and explored their effects in a separate meta-analysis on 1340 public human airway transcriptome samples for COPD. 29.6% of differentially expressed human pathways were predicted to be targeted by microbiome metabolism. For inferred metabolite-host interactions, the flux of disease-modifying metabolites as predicted from host transcriptome was generally concordant with their predicted metabolic turnover in microbiome, suggesting a synergistic response between microbiome and host in COPD. The meta-analysis results were further validated by a pilot multi-omic study on 18 COPD patients and 10 controls, in which airway metagenome, metabolome, and host transcriptome were simultaneously characterized. 69.9% of the proposed "microbiome-metabolite-host" interaction links were validated in the independent multi-omic data. Butyrate, homocysteine, and palmitate were the microbial metabolites showing strongest interactions with COPD-associated host genes. Our meta-analysis uncovered functional properties of airway microbiome that interacted with COPD host gene signatures, and demonstrated the possibility of leveraging public multi-omic data to interrogate disease biology.

12.
Respir Res ; 21(1): 149, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532258

RESUMO

BACKGROUND: Oral CXC chemokine receptor 2 (CXCR2) antagonists have been shown to inhibit neutrophil migration and activation in the lung in preclinical and human models of neutrophilic airway inflammation. A previous study with danirixin, a reversible CXCR2 antagonist, demonstrated a trend for improved respiratory symptoms and health status in patients with COPD. METHODS: This 26-week, randomised, double-blind, placebo-controlled phase IIb study enrolled symptomatic patients with mild-to-moderate COPD at risk for exacerbations. Patients received danirixin 5, 10, 25, 35 or 50 mg twice daily or placebo in addition to standard of care. Primary end-points were the dose response of danirixin compared with placebo on the incidence and severity of respiratory symptoms (Evaluating Respiratory Symptoms in COPD [E-RS:COPD] scores) and safety. Secondary end-points included the incidence of moderate-severe exacerbations, health status (COPD Assessment test, CAT) and health-related quality of life HRQoL (St. George Respiratory Questionnaire-COPD, SGRQ-C). RESULTS: A total of 614 participants were randomized to treatment. There were no improvements in E-RS:COPD, CAT or SGRQ-C scores in participants treated with any dose of danirixin compared to placebo; a larger than expected placebo effect was observed. There was an increased incidence of exacerbation in the danirixin-treated groups and an increased number of pneumonias in participants treated with danirixin 50 mg. CONCLUSIONS: The robust placebo and study effects prohibited any conclusions on the efficacy of danirixin. However, the absence of a clear efficacy benefit and the observed increase in exacerbations in danirixin-treated groups suggests an unfavorable benefit-risk profile in patients with COPD. TRIAL REGISTRATION: This study was registered with clinicaltrials.gov, NCT03034967.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32353489

RESUMO

BACKGROUND: The sputum microbiome has a potential role in disease phenotyping and risk stratification in chronic obstructive pulmonary disease (COPD), but few large longitudinal cohort studies exist. OBJECTIVE: Our aim was to investigate the COPD sputum microbiome and its association with inflammatory phenotypes and mortality. METHODS: 16S ribosomal RNA gene sequencing was performed on sputum from 253 clinically stable COPD patients (4-year median follow-up). Samples were classified as Proteobacteria or Firmicutes (phylum level) and Haemophilus or Streptococcus (genus level) dominant. Alpha diversity was measured by using Shannon-Wiener diversity and Berger-Parker dominance indices. Survival was modeled by using Cox proportional hazards regression. A subset of 78 patients had label-free liquid chromatography with tandem mass spectrometry performed, with partial least square discriminant analysis integrating clinical, microbiome, and proteomics data. RESULTS: Proteobacteria dominance and lower diversity was associated with more severe COPD according to the Global Initiative for Chronic Obstructive Lung Disease classification system (P = .0015), more frequent exacerbations (P = .0042), blood eosinophil level less than or equal to 100 cells/µL (P < .0001), and lower FEV1 (P = .026). Blood eosinophil counts showed a positive relationship with percent of Firmicutes and Streptococcus and a negative association with percent Proteobacteria and Haemophilus. Proteobacteria dominance was associated with increased mortality compared with Firmicutes-dominated or balanced microbiome profiles (hazard ratio = 2.58; 95% CI = 1.43-4.66; P = .0017 and hazard ratio = 7.47; 95% CI = 1.02-54.86; P = .048, respectively). Integrated omics analysis showed significant associations between Proteobacteria dominance and the neutrophil activation pathway in sputum. CONCLUSION: The sputum microbiome is associated with clinical and inflammatory phenotypes in COPD. Reduced microbiome diversity, associated with Proteobacteria (predominantly Haemophilus) dominance, is associated with neutrophil-associated protein profiles and an increased risk of mortality.

17.
Respir Res ; 21(1): 100, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354332

RESUMO

INTRODUCTION: Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS: We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS: The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION: Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.

19.
Chest ; 158(3): 952-964, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32353417

RESUMO

BACKGROUND: COPD is a leading cause of mortality. RESEARCH QUESTION: We hypothesized that applying machine learning to clinical and quantitative CT imaging features would improve mortality prediction in COPD. STUDY DESIGN AND METHODS: We selected 30 clinical, spirometric, and imaging features as inputs for a random survival forest. We used top features in a Cox regression to create a machine learning mortality prediction (MLMP) in COPD model and also assessed the performance of other statistical and machine learning models. We trained the models in subjects with moderate to severe COPD from a subset of subjects in Genetic Epidemiology of COPD (COPDGene) and tested prediction performance in the remainder of individuals with moderate to severe COPD in COPDGene and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We compared our model with the BMI, airflow obstruction, dyspnea, exercise capacity (BODE) index; BODE modifications; and the age, dyspnea, and airflow obstruction index. RESULTS: We included 2,632 participants from COPDGene and 1,268 participants from ECLIPSE. The top predictors of mortality were 6-min walk distance, FEV1 % predicted, and age. The top imaging predictor was pulmonary artery-to-aorta ratio. The MLMP-COPD model resulted in a C index ≥ 0.7 in both COPDGene and ECLIPSE (6.4- and 7.2-year median follow-ups, respectively), significantly better than all tested mortality indexes (P < .05). The MLMP-COPD model had fewer predictors but similar performance to that of other models. The group with the highest BODE scores (7-10) had 64% mortality, whereas the highest mortality group defined by the MLMP-COPD model had 77% mortality (P = .012). INTERPRETATION: An MLMP-COPD model outperformed four existing models for predicting all-cause mortality across two COPD cohorts. Performance of machine learning was similar to that of traditional statistical methods. The model is available online at: https://cdnm.shinyapps.io/cgmortalityapp/.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32210548

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and lung tissue deterioration. Given the high vascularity of the lung, von Willebrand factor (VWF), a central component of wound healing initiation, has previously been assessed in COPD. VWF processing, which is crucial for regulating the primary response of wound healing, has not been assessed directly. Therefore, this study aimed to characterize wound healing initiation in COPD using dynamic VWF-processing biomarkers and to evaluate how these relate to disease severity and mortality. Methods: A cross-sectional analysis of plasma samples from the ECLIPSE study collected at year 1 from moderate to very severe COPD subjects (GOLD 2-4, n=984) was performed. We applied competitive neo-epitope ELISAs specifically targeting the formation of and ADAMTS13-processed form of VWF, VWF-N and VWF-A, respectively. Results: VWF-A and VWF-N were significantly increased (VWF-N, p=0.01; VWF-A, p=0.0001) in plasma of symptomatic (mMRC score ≥2) compared to asymptomatic/mild symptomatic COPD subjects. Increased VWF-N and VWF-A levels were specifically associated with emphysema (VWF-N, p<0.0001) or prior exacerbations (VWF-A, p=0.01). When dichotomized, high levels of both biomarkers were associated with increased risk of all-cause mortality (VWF-N, HR 3.5; VWF-A, HR 2.64). Conclusion: We demonstrate that changes in VWF processing were related to different pathophysiological aspects of COPD. VWF-N relates to the chronic condition of emphysema, while VWF-A was associated with the more acute events of exacerbations. This study indicates that VWF-A and VWF-N may be relevant markers for characterization of disease phenotype and are associated with mortality in COPD. Study Identifier: NCT00292552; GSK study code SCO104960.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA