Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
World Neurosurg ; 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31526882

RESUMO

OBJECTIVE: We sought to report the safety of implementation of a novel standard of care protocol using spinal cord perfusion pressure (SCPP) maintenance for managing traumatic spinal cord injury (SCI) in lieu of mean arterial pressure goals at a U.S. Level I trauma center. METHODS: Starting in December 2017, blunt SCI patients presenting <24 hours after injury with admission American Spinal Injury Association Impairment Scale (AIS) A-C (or AIS D at neurosurgeon discretion) received lumbar subarachnoid drain (LSAD) placement for SCPP monitoring in the intensive care unit and were included in the TRACK-SCI (Transforming Research and Clinical Knowledge in Spinal Cord Injury) data registry. This SCPP protocol comprises standard care at our institution. SCPPs were monitored for 5 days (goal ≥65 mm Hg) achieved through intravenous fluids and vasopressor support. AISs were assessed at admission and day 7. RESULTS: Fifteen patients enrolled to date were aged 60.5 ± 17 years. Injury levels were 93.3% (cervical) and 6.7% (thoracic). Admission AIS was 20.0%/20.0%/26.7%/33.3% for A/B/C/D. All patients maintained mean SCPP ≥65 mm Hg during monitoring. Fourteen of 15 cases required surgical decompression and stabilization with time to surgery 8.8 ± 7.1 hours (71.4% <12 hours). At day 7, 33.3% overall and 50% of initial AIS A-C had an improved AIS. Length of stay was 14.7 ± 8.3 days. None had LSAD-related complications. There were 7 respiratory complications. One patient expired after transfer to comfort care. CONCLUSIONS: In our initial experience of 15 patients with acute SCI, standardized SCPP goal-directed care based on LSAD monitoring for 5 days was feasible. There were no SCPP-related complications. This is the first report of SCPP implementation as clinical standard of care in acute SCI.

4.
J Vis Exp ; (150)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449234

RESUMO

Imaging techniques that reflect dynamic bone turnover may aid in characterizing a wide range of bone pathologies. Bone is a dynamic tissue undergoing continuous remodeling with the competing activity of osteoblasts, which produce the new bone matrix, and osteoclasts, whose function is to eliminate mineralized bone. [18F]-NaF is a positron emission tomography (PET) radiotracer that enables visualization of bone metabolism. [18F]-NaF is chemically absorbed into hydroxyapatite in the bone matrix by osteoblasts and can thus noninvasively detect osteoblastic activity, which is occult to conventional imaging techniques. Kinetic modeling of dynamic [18F]-NaF-PET data provides detailed quantitative measures of bone metabolism. Conventional semi-quantitative PET data, which utilizes standardized uptake values (SUVs) as a measure of radiotracer activity, is referred to as a static technique due to its snapshot of tracer uptake in time.  Kinetic modeling, however, utilizes dynamic image data where tracer levels are continuously acquired providing tracer uptake temporal resolution. From the kinetic modeling of dynamic data, quantitative values like blood flow and metabolic rate (i.e., potentially informative metrics of tracer dynamics) can be extracted, all with respect to the measured activity in the image data. When combined with dual modality PET-MRI, region-specific kinetic data can be correlated with anatomically registered high-resolution structural and pathologic information afforded by MRI. The goal of this methodological manuscript is to outline detailed techniques for performing and analyzing dynamic [18F]-NaF-PET-MRI data. The lumbar facet joint is a common site of degenerative arthritis disease and a common cause for axial low back pain.  Recent studies suggest [18F]-NaF-PET may serve as a useful biomarker of painful facetogenic disease.  The human lumbar facet joint will, therefore, be used as a prototypical region of interest for dynamic [18F]-NaF-PET-MRI analysis in this manuscript.

8.
Neurosurg Focus ; 46(3): E3, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835676

RESUMO

OBJECTIVEThe elderly are a growing subpopulation within traumatic spinal cord injury (SCI) patients. Studies have reported high morbidity and mortality rates in elderly patients who undergo surgery for SCI. In this study, the authors compare the perioperative outcomes of surgically managed elderly SCI patients with those of a younger cohort and those reported in the literature.METHODSData on a consecutive series of adult traumatic SCI patients surgically managed at a single institution in the period from 2007 to 2017 were retrospectively reviewed. The cohort was divided into two groups based on age: younger than 70 years and 70 years or older. Assessed outcomes included complications, in-hospital mortality, intensive care unit (ICU) stay, hospital length of stay (LOS), disposition, and neurological status.RESULTSA total of 106 patients were included in the study: 83 young and 23 elderly. The two groups were similar in terms of imaging features (cord hemorrhage and fracture), operative technique, and American Spinal Injury Association Impairment Scale (AIS) grade. The elderly had a significantly higher proportion of cervical SCIs (95.7% vs 71.1%, p = 0.047). There were no significant differences between the young and the elderly in terms of the ICU stay (13.1 vs 13.3 days, respectively, p = 0.948) and hospital LOS (23.3 vs 21.7 days, p = 0.793). Elderly patients experienced significantly higher complication (73.9% vs 43.4%, p = 0.010) and mortality (13.0% vs 1.2%, p = 0.008) rates; in other words, the elderly patients had 1.7 times and 10.8 times the rate of complications and mortality, respectively, than the younger patients. No elderly patients were discharged home (0.0% vs 18.1%, p = 0.029). Discharge AIS grade and AIS grade change were similar between the groups.CONCLUSIONSElderly patients had higher complication and mortality rates than those in younger patients and were less likely to be discharged home. However, it does seem that mortality rates have improved compared to those in prior historical reports.

9.
Brain ; 142(3): 633-646, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715195

RESUMO

Spinal cord lesions detected on MRI hold important diagnostic and prognostic value for multiple sclerosis. Previous attempts to correlate lesion burden with clinical status have had limited success, however, suggesting that lesion location may be a contributor. Our aim was to explore the spatial distribution of multiple sclerosis lesions in the cervical spinal cord, with respect to clinical status. We included 642 suspected or confirmed multiple sclerosis patients (31 clinically isolated syndrome, and 416 relapsing-remitting, 84 secondary progressive, and 73 primary progressive multiple sclerosis) from 13 clinical sites. Cervical spine lesions were manually delineated on T2- and T2*-weighted axial and sagittal MRI scans acquired at 3 or 7 T. With an automatic publicly-available analysis pipeline we produced voxelwise lesion frequency maps to identify predilection sites in various patient groups characterized by clinical subtype, Expanded Disability Status Scale score and disease duration. We also measured absolute and normalized lesion volumes in several regions of interest using an atlas-based approach, and evaluated differences within and between groups. The lateral funiculi were more frequently affected by lesions in progressive subtypes than in relapsing in voxelwise analysis (P < 0.001), which was further confirmed by absolute and normalized lesion volumes (P < 0.01). The central cord area was more often affected by lesions in primary progressive than relapse-remitting patients (P < 0.001). Between white and grey matter, the absolute lesion volume in the white matter was greater than in the grey matter in all phenotypes (P < 0.001); however when normalizing by each region, normalized lesion volumes were comparable between white and grey matter in primary progressive patients. Lesions appearing in the lateral funiculi and central cord area were significantly correlated with Expanded Disability Status Scale score (P < 0.001). High lesion frequencies were observed in patients with a more aggressive disease course, rather than long disease duration. Lesions located in the lateral funiculi and central cord area of the cervical spine may influence clinical status in multiple sclerosis. This work shows the added value of cervical spine lesions, and provides an avenue for evaluating the distribution of spinal cord lesions in various patient groups.

10.
Radiol Clin North Am ; 57(2): 319-339, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30709473

RESUMO

T2-weighted (T2W) imaging is the most important sequence for detection of acute traumatic spinal cord pathology in clinical practice. Intramedullary hemorrhage on T2W imaging is associated with some component of irreversible injury and arguably the most robust MR imaging predictor of injury severity. The MR imaging appearance of the injured spinal cord in the early stages of injury is highly dynamic, and the time delay from injury to imaging must be considered in image interpretation. Diffusion imaging offers promise as specific tool for interrogating spinal cord integrity, although well-designed, prospective clinical studies validating its application remain limited.


Assuntos
Imagem por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Doença Aguda , Humanos , Índice de Gravidade de Doença , Medula Espinal/diagnóstico por imagem
11.
Neuroimage ; 184: 901-915, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300751

RESUMO

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines. Robust and reliable segmentation across multi-site spinal cord data is challenging because of the large variability related to acquisition parameters and image artifacts. In particular, a precise delineation of lesions is hindered by a broad heterogeneity of lesion contrast, size, location, and shape. The goal of this study was to develop a fully-automatic framework - robust to variability in both image parameters and clinical condition - for segmentation of the spinal cord and intramedullary MS lesions from conventional MRI data of MS and non-MS cases. Scans of 1042 subjects (459 healthy controls, 471 MS patients, and 112 with other spinal pathologies) were included in this multi-site study (n = 30). Data spanned three contrasts (T1-, T2-, and T2∗-weighted) for a total of 1943 vol and featured large heterogeneity in terms of resolution, orientation, coverage, and clinical conditions. The proposed cord and lesion automatic segmentation approach is based on a sequence of two Convolutional Neural Networks (CNNs). To deal with the very small proportion of spinal cord and/or lesion voxels compared to the rest of the volume, a first CNN with 2D dilated convolutions detects the spinal cord centerline, followed by a second CNN with 3D convolutions that segments the spinal cord and/or lesions. CNNs were trained independently with the Dice loss. When compared against manual segmentation, our CNN-based approach showed a median Dice of 95% vs. 88% for PropSeg (p ≤ 0.05), a state-of-the-art spinal cord segmentation method. Regarding lesion segmentation on MS data, our framework provided a Dice of 60%, a relative volume difference of -15%, and a lesion-wise detection sensitivity and precision of 83% and 77%, respectively. In this study, we introduce a robust method to segment the spinal cord and intramedullary MS lesions on a variety of MRI contrasts. The proposed framework is open-source and readily available in the Spinal Cord Toolbox.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Redes Neurais (Computação) , Medula Espinal/patologia , Humanos , Imagem por Ressonância Magnética/métodos , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Neurosurgery ; 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30496474

RESUMO

BACKGROUND: Cervical spinal cord injury (SCI) is a devastating condition with very few treatment options. It remains unclear if early surgery correlated with conversion of American Spinal Injury Association Impairment Scale (AIS) grade A injuries to higher grades. OBJECTIVE: To determine the optimal time to surgery after cervical SCI through retrospective analysis. METHODS: We collected data from 48 patients with cervical SCI. Based on the time from Emergency Department (ED) presentation to surgical decompression, we grouped patients into ultra-early (decompression within 12 h of presentation), early (within 12-24 h), and late groups (>24 h). We compared the improvement in AIS grade from admission to discharge, controlling for confounding factors such as AIS grade on admission, injury severity, and age. The mean time from injury to ED for this group of patients was 17 min. RESULTS: Patients who received surgery within 12 h after presentation had a relative improvement in AIS grade from admission to discharge: the ultra-early group improved on average 1.3. AIS grades compared to 0.5 in the early group (P = .02). In addition, 88.8% of patients with an AIS grade A converted to a higher grade (AIS B or better) in the ultra-early group, compared to 38.4% in the early and late groups (P = .054). CONCLUSION: These data suggest that surgical decompression after SCI that takes place within 12 h may lead to a relative improved neurological recovery compared to surgery that takes place after 12 h.

15.
J Neuroimaging ; 28(6): 601-607, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30079471

RESUMO

BACKGROUND AND PURPOSE: HIV infection of the central nervous system (CNS) is a nearly universal feature of untreated systemic HIV infection. While combination antiretroviral therapy (ART) that suppresses systemic infection usually suppresses CNS (CNS) HIV infection, exceptions have been reported with discordance between CSF and blood HIV RNA concentrations such that CSF demonstrates higher HIV concentrations than blood, referred to as CSF HIV escape. Rarely, CSF HIV escape presents with neurological symptoms, called neurosymptomatic escape. METHODS: In this report, we describe the MRI findings in 6 patients with neurosymptomatic escape who were identified at our institution. RESULTS: MR imaging suggests an encephalitis possibly evolving from a distinct HIV subpopulation within the CNS. A major difference between primary HIV infection and the current case series is that untreated HIV encephalitis usually occurs in the setting of late disease and a low CD4 whereas CSF Escape develops in setting of a higher CD4, as well as more robust immune and inflammatory responses. Our findings show a burden and distribution of white matter signal abnormalities atypical for patients adherent to ART and that differs from that seen in untreated HIV encephalitis and leukoencephalopathy. Moreover, these patients may also demonstrate perivascular enhancement, a finding not previously reported in the CSF HIV escape literature. CONCLUSION: Recognition of these imaging characteristics-patchy subcortical white matter intensities and a perivascular pattern of enhancement-may be helpful in recognition and, along with other clinical information and CSF findings, in diagnosis of neurosymptomatic escape.

16.
J Neurointerv Surg ; 10(12): e37, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29666181

RESUMO

PURPOSE: To evaluate the accuracy of percutaneous fluoroscopic injection into the spinal cord of a spine phantom utilizing integrated navigational guidance from fused flat panel detector CT (FDCT) and MR datasets. Conventional and convection-enhanced delivery (CED) techniques were evaluated. MATERIALS AND METHODS: FDCT and MR datasets of a swine thoracic spine phantom were co-registered using an integrated guidance system and surface to spinal cord target trajectory planning was performed on the fused images. Under real-time fluoroscopic guidance with pre-planned trajectory overlay, spinal cord targets were accessed via a coaxial technique. Final needle tip position was compared with a pre-determined target on 10 independent passes. In a subset of cases, contrast was injected into the central spinal cord with a 25G spinal needle or customized 200 µm inner diameter step design cannula for CED. RESULTS: Average needle tip deviation from target measured 0.92±0.5 mm in the transverse, 0.47±0.4 mm in the anterior-posterior, and 1.67±1.2 mm in the craniocaudal dimension for an absolute distance error of 2.12±1.12 mm. CED resulted in elliptical intramedullary diffusion of contrast compared with primary reflux observed with standard needle injection. CONCLUSIONS: These phantom feasibility data demonstrate a minimally invasive percutaneous approach for targeted injection into the spinal cord utilizing real-time fluoroscopy aided by overlay trajectories derived from fused MRI and FDCT data sets with a target error of 2.1 mm. Intramedullary diffusion of injectate in the spinal cord is facilitated with CED compared with standard injection technique. Pre-clinical studies in large animal models are warranted.

17.
J Emerg Med ; 54(6): 749-756, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29685476

RESUMO

BACKGROUND: With increased computed tomography (CT) utilization, clinicians may simultaneously order head and neck CT scans, even when injury is suspected only in one region. OBJECTIVE: We sought to determine: 1) the frequency of simultaneous ordering of a head CT scan when a neck CT scan is ordered; 2) the yields of simultaneously ordered head and neck CT scans for clinically significant injury (CSI); and 3) whether injury in one region is associated with a higher rate of injury in the other. METHODS: This was a retrospective study of all adult patients who received neck CT scans (and simultaneously ordered head CT scans) as part of their blunt trauma evaluation at an urban level 1 trauma center in 2013. An expert panel determined CSI of head and neck injuries. We defined yield as number of patients with injury/number of patients who had a CT scan. RESULTS: Of 3223 patients who met inclusion criteria, 2888 (89.6%) had simultaneously ordered head and neck CT scans. CT yield for CSI in both the head and neck was 0.5% (95% confidence interval [CI] 0.3-0.8%), and the yield for any injury in both the head and neck was 1.4% (95% CI 1.0-1.8%). The yield for CSI in one region was higher when CSI was seen in the other region. CONCLUSIONS: The yield of CT for CSI in both the head and neck concomitantly is very low. When injury is seen in one region, there is higher likelihood of injury in the other. These findings argue against paired ordering of head and neck CT scans and suggest that CT scans should be ordered individually or when injury is detected in one region.

19.
Clin Neuroradiol ; 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29582111

RESUMO

PURPOSE: Both laboratory markers and radiographic findings in the setting of spinal infections can be nonspecific in determining the presence or absence of active infection, and can lag behind both clinical symptoms and antibiotic response. Magnetic resonance imaging (MRI) with diffusion-weighted imaging (DWI) has been shown to be helpful in evaluating brain abscesses but has not been commonly used in evaluating spinal infections. We aimed to correlate findings on DWI of the spine to results of microbiological sampling in patients with suspected spinal infections. METHODS: Patients who underwent MRI with DWI for suspicion of spinal infections and microbiological sampling from 2002 to 2010 were identified and reviewed retrospectively in this institutional review board approved study. In addition to DWI, scans included sagittal and axial T1, fast-spin echo (FSE) T2, and post-gadolinium T1 with fat saturation. Regions of interest were drawn on apparent diffusion coefficient (ADC) maps in the area of suspected infections, and ADC values were correlated with microbiological sampling. RESULTS: Of 38 patients with suspected spinal infections, 29 (76%) had positive microbiological sampling, and 9 (24%) had negative results. The median ADC value was 740â€¯× 10-6 mm2/s for patients with positive microbiological sampling and 1980â€¯× 10-6 mm2/s for patients with negative microbiological sampling (p < 0.001). Using an ADC value of 1250â€¯× 10-6 mm2/s or less as the cut-off value for a positive result for spinal infection, sensitivity was 66%, specificity was 88%, positive predictive value was 95%, negative predictive value was 41% and accuracy was 70%. CONCLUSION: In patients with suspected spine infection, ADC values on DWI are significantly reduced in those patients with positive microbiological sampling compared to patients with negative microbiological sampling. The DWI of the spine correlates well with the presence or absence of spinal infection and may complement conventional magnetic resonance imaging (MRI).

20.
Neurosurgery ; 82(6): 870-876, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973360

RESUMO

BACKGROUND: While the utilization of neurophysiologic intraoperative monitoring with motor evoked potentials (MEPs) has become widespread in surgery for traumatic spine fractures and spinal cord injury (SCI), clinical validation of its diagnostic and therapeutic benefit has been limited. OBJECTIVE: To describe the use of intraoperative MEP at a large level I trauma center and assess the prognostic capability of this technology. METHODS: The SCI REDCap database at our institution, a level I trauma center, was queried for acute cervical SCI patients who underwent surgery with intraoperative monitoring between 2005 and 2011, yielding 32 patients. Of these, 23 patients had severe SCI (association impairment scale [AIS] A, B, C). We assessed preoperative and postoperative SCI severity (AIS grade), surgical data, use of steroids, and early magnetic resonance imaging (MRI) findings (preoperatively in 27 patients), including axial T2 MRI grade (Brain and Spinal Injury Center score). RESULTS: The presence of MEPs significantly predicted AIS at discharge (P< .001). In the group of severe SCI (ie, AIS A, B, C) patients with elicitable MEPs, AIS improved by an average of 1.5 grades (median = 1), as compared to the patients without elicitable MEP who improved on average 0.5 grades (median = 0, P< .05). In addition, axial MRI grade significantly correlated with MEP status. Patients without MEPs had a significantly higher axial MRI grade in comparison to the patients with MEPs (P< .001). CONCLUSION: In patients with severe SCI, MEPs predicted neurological improvement and correlated with axial MRI grade. These significant findings warrant future prospective studies of MEPs as a prognostic tool in SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA