RESUMO
Background: Intracorporeal anastomosis (IA) is a difficult but popular anastomotic approach for reconstruction of digestive tract after laparoscopic right hemicolectomy, which may reduce some limitations faced during extracorporeal anastomosis (EA). Methods: A retrospective review of 78 patients who underwent laparoscopic right hemicolectomy by a veteran surgeon in a high-volume public tertiary hospital, including 50 patients with IA and 28 patients with EA. The intraoperative-related factors and short-term results of the two anastomotic approaches were compared. Results: There was no significant difference in demographics and clinical characteristics between the two groups (P>0.05). The intraoperative blood loss was less (P=0.010) and the incision length was shorter (P<0.001) in the intracorporeal group. Postoperative farting time was faster (P=0.005) and postoperative pain score (VAS) was lower (P<0.001) in IA group. Although the anastomotic time of IA was shorter (P<0.001), the operative time of the two groups were similar. And number of lymph nodes harvested, NLR from POD1 to POD3, postoperative hospital stay and overall hospital stay between the two groups were comparable. Except for significant difference in abdominal infection rate, the Clavien-Dindo classification and the incidence of other postoperative complications were not statistically different. Moreover, the morbidity of abdominal infection decreased with time in the IA group (P=0.040). Conclusion: IA is a reliable and feasible procedure, which has faster anastomotic time, earlier return of bowel function and superior postoperative comfort of patient, compared to EA. The postoperative complication rate of IA is similar to that of EA, and may be improved with the IA technical maturity of surgeons, which potentially contributes to the development of ERAS.
RESUMO
Background: Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods: IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results: Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion: Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.
Assuntos
Doenças Autoimunes , Miosite de Corpos de Inclusão , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Miosite de Corpos de Inclusão/genética , Apresentação de Antígeno , Biologia ComputacionalRESUMO
The hormonal transcription factor androgen receptor (AR) is a master regulator of prostate cancer (PCa). Protein palmitoylation, which attaches a palmitate fatty acid to a substrate protein, is mediated by a class of 23 ZDHHC (Zinc-Finger DHHC motif)-family palmitoyltransferases. Although palmitoylation has been shown to modify many proteins and regulate diverse cellular processes, little is known about ZDHHC genes in cancer. Here we examined ZDHHC family gene expression in human tissue panels and identified ZDHHC7 as a PCa-relevant member. RNA-seq analyses of PCa cells with ZDHHC7 de-regulation revealed global alterations in androgen response and cell cycle pathways. Mechanistically, ZDHHC7 inhibits AR gene transcription and therefore reduces AR protein levels and abolishes AR signaling in PCa cells. Accordingly, ZDHHC7 depletion increased the oncogenic properties of PCa cells, whereas restoring ZDHHC7 is sufficient to suppress PCa cell proliferation and invasion in vitro and mitigate xenograft tumor growth in vivo. Lastly, we demonstrated that ZDHHC7 is downregulated in human PCa compared to benign-adjacent tissues, and its loss is associated with worse clinical outcomes. In summary, our study reveals a global role of ZDHHC7 in inhibiting androgen response and suppressing PCa progression and identifies ZDHHC7 loss as a biomarker for aggressive PCa and a target for therapeutic intervention.
RESUMO
Gastric cancer (GC) is one of the most common malignancies. Immunotherapy becomes an indispensable part of GC. This study conducts bibliometric analysis of immunotherapy for GC to clarify the research status and identify potential new research directions. VOS viewer and CiteSpace visualization software were used to demonstrate collaborations and correlations. A total of 1141 English publications from 2012 to 2022 were included. The number of publications increased year by year. The publications were mainly from China (n = 579, 50.70%), followed by the United States. Fudan University published the most publications (n = 48, 4.21%). Frontiers in Oncology and Journal of Clinical Oncology ranked first in cited and co-cited journals, respectively. Kim Kyoung-Mee published the most publications on immunotherapy for GC (n = 14). The clustering of timeline view and co-cited references show the hotspot transformation on immunotherapy for GC. Initially, the hot topic was "cytokine-induced killer cells" and "myeloid-derived suppressor cells." In recent years, the focus has turned to "targeted therapy." "CAR-T" has become the hottest topic, and GC has entered precision therapy phase. Screening patients who can benefit from immunotherapy is key to improving prognosis. The combination of immunotherapy with other treatment options, such as chemotherapy and targeted therapy, is currently the focus of research. Chimeric antigen receptor T cell will be further studied in the future.
Bibliometrics is one of the main tools in the current research and hot spots. Immunotherapy becomes an indispensable part of gastric cancer. Chimeric antigen receptor T cells will play an important role for gastric cancer.
Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Imunoterapia , Bibliometria , China , Mineração de DadosRESUMO
Sirtuin 6 (SIRT6) is a multifaceted protein deacetylase/deacylase and a major target for small-molecule modulators of longevity and cancer. In the context of chromatin, SIRT6 removes acetyl groups from histone H3 in nucleosomes, but the molecular basis for its nucleosomal substrate preference is unknown. Our cryo-electron microscopy structure of human SIRT6 in complex with the nucleosome shows that the catalytic domain of SIRT6 pries DNA from the nucleosomal entry-exit site and exposes the histone H3 N-terminal helix, while the SIRT6 zinc-binding domain binds to the histone acidic patch using an arginine anchor. In addition, SIRT6 forms an inhibitory interaction with the C-terminal tail of histone H2A. The structure provides insights into how SIRT6 can deacetylate both H3 K9 and H3 K56.
Assuntos
Nucleossomos , Sirtuínas , Humanos , Histonas/metabolismo , Microscopia Crioeletrônica , Cromatina , Sirtuínas/genéticaRESUMO
Background: Immune-mediated necrotizing myopathy (IMNM), a subgroup of idiopathic inflammatory myopathies (IIMs), is characterized by severe proximal muscle weakness and prominent necrotic fibers but no infiltration of inflammatory cells. IMNM pathogenesis is unclear. This study investigated key biomarkers and potential pathways for IMNM using high-throughput sequencing and bioinformatics technology. Methods: RNA sequencing was conducted in 18 IMNM patients and 10 controls. A combination of weighted gene coexpression network analysis (WGCNA) and differentially expressed gene (DEG) analysis was conducted to identify IMNM-related DEGs. Feature genes were screened out by employing the protein-protein interaction (PPI) network, support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage selection operator (LASSO). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify their differential expression, and the receiver operating characteristic curve (ROC) was used to evaluate their diagnostic efficiency. Functional enrichment analysis was applied to reveal the hidden functions of feature genes. Furthermore, 28 immune cell abundance patterns in IMNM samples were measured. Results: We identified 193 IMNM-related DEGs that were aberrantly upregulated in the IMNM population and were closely associated with immune-inflammatory responses, regulation of skeletal and cardiac muscle contraction, and lipoprotein metabolism. With the help of the PPI network and the LASSO and SVM-RFE algorithms, three feature genes, LTK, MYBPH, and MYL4, were identified and further confirmed by qRT-PCR. ROC curves among IMNM, dermatomyositis (DM), inclusion body myositis (IBM), and polymyositis (PM) samples validated the LTK and MYL4 genes as IMNM-specific feature markers. In addition, all three genes had a notable association with the autophagy-lysosome pathway and immune-inflammatory responses. Ultimately, IMNM displayed a marked immune-cell infiltrative microenvironment. The most significant correlation was found between CD4 T cells, CD8 T cells, macrophages, natural killer (NK) cells, and dendritic cells (DCs). Conclusions: LTK, MYBPH, and MYL4 were identified as potential key molecules for IMNM and are believed to play a role in the autophagy-lysosome pathway and muscle inflammation.
RESUMO
Methyl protodioscin (MPD), a furostanol saponin found in the rhizomes of Dioscoreaceae, has lipid-lowering and broad anticancer properties. However, the efficacy of MPD in treating prostate cancer remains unexplored. Therefore, the present study aimed to evaluate the anticancer activity and action mechanism of MPD in prostate cancer. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, and flow cytometer assays revealed that MPD suppressed proliferation, migration, cell cycle, and invasion and induced apoptosis of DU145 cells. Mechanistically, MPD decreased cholesterol concentration in the cholesterol oxidase, peroxidase and 4-aminoantipyrine phenol (COD-PAP) assay, disrupting the lipid rafts as detected using immunofluorescence and immunoblot analyses after sucrose density gradient centrifugation. Further, it reduced the associated mitogen-activated protein kinase (MAPK) signaling pathway protein P-extracellular regulated protein kinase (ERK), detected using immunoblot analysis. Forkhead box O (FOXO)1, a tumor suppressor and critical factor controlling cholesterol metabolism, was predicted to be a direct target of MPD and induced by MPD. Notably, in vivo studies demonstrated that MPD significantly reduced tumor size, suppressed cholesterol concentration and the MAPK signaling pathway, and induced FOXO1 expression and apoptosis in tumor tissue in a subcutaneous mouse model. These results suggest that MPD displays anti-prostate cancer activity by inducing FOXO1 protein, reducing cholesterol concentration, and disrupting lipid rafts. Consequently, the reduced MAPK signaling pathway suppresses proliferation, migration, invasion, and cell cycle and induces apoptosis of prostate cancer cells.
Assuntos
Neoplasias da Próstata , Saponinas , Humanos , Masculino , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Saponinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células , Apoptose , Movimento Celular , Sistema de Sinalização das MAP Quinases , Proteína Forkhead Box O1/metabolismoRESUMO
Sirtuin 6 (SIRT6) is a multifaceted protein deacetylase/deacylase and a major target for small-molecule modulators of longevity and cancer. In the context of chromatin, SIRT6 removes acetyl groups from histone H3 in nucleosomes, but the molecular basis for its nucleosomal substrate preference is unknown. Our cryo-electron microscopy structure of human SIRT6 in complex with the nucleosome shows that the catalytic domain of SIRT6 pries DNA from the nucleosomal entry-exit site and exposes the histone H3 N-terminal helix, while the SIRT6 zinc-binding domain binds to the histone acidic patch using an arginine anchor. In addition, SIRT6 forms an inhibitory interaction with the C-terminal tail of histone H2A. The structure provides insights into how SIRT6 can deacetylate both H3 K9 and H3 K56. Teaser: The structure of the SIRT6 deacetylase/nucleosome complex suggests how the enzyme acts on both histone H3 K9 and K56 residues.
RESUMO
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Nucleossomos/genética , Nucleossomos/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genéticaRESUMO
BACKGROUND: This study aimed to investigate the clinical risk factors of dysautonomic symptom burden in neuromyelitis optica spectrum disorder (NMOSD) and its impact on patients' quality of life. METHODS: A total of 63 NMOSD patients and healthy controls were enrolled. All participants completed the Composite Autonomic Symptom Score 31 (COMPASS-31) to screen for symptoms of autonomic dysfunction. A comprehensive clinical evaluation was performed on NMOSD patients, such as disease characteristics and composite evaluations of life status, including quality of life, anxiety/depression, sleep, and fatigue. Correlated factors of dysautonomic symptoms and quality of life were analyzed. RESULTS: The score of COMPASS-31 in the NMOSD group was 17.2 ± 10.3, significantly higher than that in healthy controls (P = 0.002). In NMOSD patients, the higher COMPASS-31 score was correlated with more attacks (r = 0.49, P < 0.001), longer disease duration (r = 0.52, P < 0.001), severer disability (r = 0.50, P < 0.001), more thoracic cord lesions (r = 0.29, P = 0.02), more total spinal cord lesions (r = 0.35, P = 0.005), severer anxiety (r = 0.55, P < 0.001), severer depression (r = 0.48, P < 0.001), severer sleep disturbances (r = 0.59, P < 0.001), and severer fatigue (r = 0.56, P < 0.001). The disability, total spinal cord lesions, and fatigue were revealed to be independently associated factors. Further analysis revealed that the COMPASS-31 score was independently correlated with scores of all the domains of patients' quality of life scale (P < 0.05). CONCLUSIONS: Dysautonomic symptom burden is correlated with decreased quality of life and certain clinical characteristics such as disability, the burden of spinal cord lesions, and fatigue in NMOSD patients. Investigation and proper management of autonomic dysfunction may help to improve the quality of life in patients with NMOSD.
Assuntos
Neuromielite Óptica , Disautonomias Primárias , Humanos , Neuromielite Óptica/patologia , Qualidade de Vida , Medula Espinal/patologia , Fadiga/epidemiologia , Fadiga/etiologiaRESUMO
Background: Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and fatigability. The fluctuating nature of the disease course impedes the clinical management. Objective: The purpose of the study was to establish and validate a machine learning (ML)-based model for predicting the short-term clinical outcome in MG patients with different antibody types. Methods: We studied 890 MG patients who had regular follow-ups at 11 tertiary centers in China from 1 January 2015 to 31 July 2021 (653 patients for derivation and 237 for validation). The short-term outcome was the modified post-intervention status (PIS) at a 6-month visit. A two-step variable screening was used to determine the factors for model construction and 14 ML algorithms were used for model optimisation. Results: The derivation cohort included 653 patients from Huashan hospital [age 44.24 (17.22) years, female 57.6%, generalized MG 73.5%], and the validation cohort included 237 patients from 10 independent centers [age 44.24 (17.22) years, female 55.0%, generalized MG 81.2%]. The ML model identified patients who were improved with an area under the receiver operating characteristic curve (AUC) of 0.91 [0.89-0.93], 'Unchanged' 0.89 [0.87-0.91], and 'Worse' 0.89 [0.85-0.92] in the derivation cohort, whereas identified patients who were improved with an AUC of 0.84 [0.79-0.89], 'Unchanged' 0.74 [0.67-0.82], and 'Worse' 0.79 [0.70-0.88] in the validation cohort. Both datasets presented a good calibration ability by fitting the expectation slopes. The model is finally explained by 25 simple predictors and transferred to a feasible web tool for an initial assessment. Conclusion: The explainable, ML-based predictive model can aid in forecasting the short-term outcome for MG with good accuracy in clinical practice.
RESUMO
The laminin α2 (LAMA2) gene pathogenic variants can lead to limb-girdle muscular dystrophy (known as LGMDR23), which is rarely reported and characterized by proximal weakness in the limbs. We present the case of a 52-year-old woman who gradually developed weakness in both lower extremities since the age of 32 years. Magnetic resonance imaging (MRI) brain showed symmetrical sphenoid wings-like white matter demyelination in bilateral lateral ventricles. Electromyography showed quadriceps muscle damage on the bilateral lower extremity. Next-generation sequencing (NGS) found two loci variations in the LAMA2 gene, i.e., c.2749 + 2dup and c.8689C>T. This case highlights the importance of considering LGMDR23 in patients presenting with weakness and white matter demyelination on MRI brain and further expands the gene variants spectrum of LGMDR23.
RESUMO
INTRODUCTION: Progressive cerebral venous sinus thrombosis (CVST)-induced visual loss remains problematic, despite decreasing overall mortality owing to early diagnosis and aggressive treatment. Optic nerve sheath fenestration (ONSF) improves or stabilizes visual function in patients with idiopathic intracranial hypertension; however, its role in CVST awaits elucidation. We evaluated the efficacy and safety of ONSF in resolving CVST-induced visual impairment based on long-term observation. METHODS: This observational study included 18 patients with progressive CVST-induced visual loss, who had undergone ONSF between 2012 and 2021. Patients received maximum medical therapy, including anticoagulants and intracranial pressure (ICP)-lowering medications. The best-corrected visual acuity (BCVA), visual fields (VFs), and optic nerve head were assessed at baseline, at 1 week after ONSF, and over 6 months after ONSF. Activities of daily living (ADL) and National Eye Institute Visual Function Questionnaire-25 (VFQ-25) scores were assessed at final follow-up. RESULTS: Thirty-one ONSF-treated eyes of 18 patients were included. The mean follow-up duration was 35.6 months (range 1 week-8 years). Two patients were lost to follow-up. Before ONSF, all patients were still experiencing progressive visual loss despite receiving adequate anticoagulation and ICP-lowering therapy. Postoperative BCVA remained stable or improved in 25/31 eyes (80.6%) 1 week postoperatively and 17/28 eyes (60.7%) upon final follow-up. All papilledema resolved postoperatively. No complications were reported except for one transient postoperative diplopia. The median ADL score was 100 (range 25-100), and the mean total VFQ-25 score was 40.6 (range 9.5-87.3). CONCLUSION: This was the largest study to describe ONSF's role in CVST based on a long-term follow-up. Considering its efficacy and favorable safety, ONSF can be considered an important adjunctive approach to resolving progressive visual loss of CVST patients, on the basis of anticoagulation and ICP-lowering therapy.
Cerebral venous sinus thrombosis (CVST) is a cerebrovascular disease that generally affects young patients. Medical treatments include anticoagulants, intracranial pressure (ICP)-lowering medications, and repeated lumbar punctures, effectively reducing CVST's mortality rate. However, CVST still carries a potential risk of progressive vision loss. Optic nerve sheath fenestration (ONSF) has been reported to be effective and safe in protecting visual function of patients with idiopathic intracranial hypertension. However, its efficacy and safety have not been evaluated in visual loss caused by CVST. We were the first to evaluate the efficacy and safety of ONSF in CVST-induced progressive visual loss based on long-term follow-ups. Before ONSF, all patients were still experiencing progressive visual loss despite receiving adequate anticoagulation and ICP-lowering therapy. We found ONSF to be 80.6% (1 week postoperatively) and 60.7% (after long-term follow-up of over 6 months) effective in stabilizing and/or improving visual function as well as 100% effective in papilledema resolution. Moreover, ONSF exhibited a favorable safety profile, with an extremely low complication rate of 5.6% despite under perioperative anticoagulation. Although visual impairment in CVST was reported to be uncommon, it often significantly affects quality of life and social value of patients. Thus, visual loss in CVST deserves more attention from neurologists, neurosurgeons, and ophthalmologists. Considering its efficacy and favorable safety, ONSF could be regarded a potentially important adjunctive approach to resolving progressive visual loss in CVST patients, on the basis of anticoagulation and ICP-lowering therapy.Procedural videos available for this article.
RESUMO
INTRODUCTION: Atractylodes chinensis is a Chinese herb that is used in traditional medicine; it contains volatile components that have enormous potential for pharmaceutical, food, and cosmetic applications. The destruction of wild resources demands significant improvement in the quality of artificial cultivation of Atractylodes chinensis. However, little is known about the compositional differences in the volatile substances derived from the wild and cultivated varieties of Atractylodes chinensis. OBJECTIVES: We aimed to evaluate the specific components of Atractylodes chinensis and analyse the similarities and differences between the volatile components and metabolic pathways in the wild and cultivated varieties. MATERIAL AND METHODS: Metabolomic analysis using gas chromatography-mass spectrometry (GC-MS) was employed following the extraction of volatile components from Atractylodes chinensis using headspace solid-phase microextraction (HS-SPME). RESULTS: A total of 167 volatile metabolites were extracted, and 137 substances were matched with NIST and Wiley databases. Among them, 76 compounds exhibited significant differences between the two sources; these mainly included terpenes, aromatics, and esters. KEGG enrichment analysis indicated that the differential metabolites were primarily involved in the biosynthesis of secondary metabolites, terpene biosynthesis, and limonene and pinene degradation; all these pathways have geranyl diphosphate (GDP) as the common link. CONCLUSION: The total content of volatile substances extracted from wild Atractylodes chinensis was 2.5 times higher than that from the cultured variety; however, each source had different dominant metabolites. This study underscores the necessity for protecting wild Atractylodes chinensis resources, while enhancing the quality of cultivated Atractylodes chinensis.
Assuntos
Atractylodes , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Terpenos , Limoneno/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Enzymes of the mixed lineage leukemia (MLL) family of histone H3 lysine 4 (H3K4) methyltransferases are critical for cellular differentiation and development and are regulated by interaction with a conserved subcomplex consisting of WDR5, RbBP5, Ash2L, and DPY30. While pairwise interactions between complex subunits have been determined, the mechanisms regulating holocomplex assembly are unknown. In this investigation, we systematically characterized the biophysical properties of a reconstituted human MLL1 core complex and found that the MLL1-WDR5 heterodimer interacts with the RbBP5-Ash2L-DPY30 subcomplex in a hierarchical assembly pathway that is highly dependent on concentration and temperature. Surprisingly, we found that the disassembled state is favored at physiological temperature, where the enzyme rapidly becomes irreversibly inactivated, likely because of complex components becoming trapped in nonproductive conformations. Increased protein concentration partially overcomes this thermodynamic barrier for complex assembly, suggesting a potential regulatory mechanism for spatiotemporal control of H3K4 methylation. Together, these results are consistent with the hypothesis that regulated assembly of the MLL1 core complex underlies an important mechanism for establishing different H3K4 methylation states in mammalian genomes.
Assuntos
Histonas , Leucemia , Multimerização Proteica , Temperatura , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Multimerização Proteica/fisiologia , Estrutura Quaternária de ProteínaRESUMO
The antimicrobial effects of continuous treatment with essential oils (EOs) in both liquid and gaseous phases have been intensively studied. Due to their rapid volatility, the effects of EOs on microorganisms after transient treatment are also worth exploring. In this work, the persistent effects of cinnamaldehyde (CA) vapor on Aspergillus flavus were detected by a series of biochemical analyses. Transcriptome analysis was also conducted to study the gene expression changes between recovered and normal A. flavus. When CA vapor was removed, biochemical analyses showed that the oxidative stress induced by the antimicrobial atmosphere was alleviated, and almost all the damaged functions were restored apart from mitochondrial function. Remarkably, the suppressed aflatoxin production intensified, which was confirmed by the up-regulation of most genes in the aflatoxin synthetic gene cluster, the velvet-related gene FluG and the aflatoxin precursor acetyl-CoA. Transcriptomic analysis also demonstrated significant changes in secondary metabolism, energy metabolism, oxidative stress, and amino acid metabolism in the recovery group. Taken together, these findings provide new insights into the mechanisms underlying the response of A. flavus to CA vapor treatment and will guide the rational application of EOs.
Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Acroleína/farmacologia , Acroleína/metabolismo , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Excessive supraventricular ectopic activity (ESVEA) is correlated with the development of atrial fibrillation (AF) and is frequently observed in ischemic stroke patients. This meta-analysis aims to summarize the evidence on the association between ESVEA and the risk of AF and stroke. METHODS: PubMed and Embase databases were systematically searched to identify all publications providing relevant data from inception to 23 August 2022. Hazard ratio (HR) and 95% confidence interval (CI) were pooled using fixed-effect or random-effect models. RESULTS: We included 23,272 participants from 20 studies. Pooled results showed that ESVEA was associated with an increased risk of AF in the general population (HR: 2.57; 95% CI 2.16-3.05), increased risk of AF in ischemic stroke patients (HR: 2.91; 95% CI 1.80-4.69), new-onset ischemic stroke (HR: 1.91; 95% CI 1.30-2.79), and all-cause mortality (HR: 1.41; 95% CI 1.24-1.59). Pooled analysis indicated that ESVEA was not associated with recurrent ischemic stroke/transient ischemic attack (TIA) (HR: 1.24; 95% CI 0.91-1.67). CONCLUSIONS: ESVEA is associated with AF, new-onset ischemic stroke, and all-cause mortality.
RESUMO
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by the presence of eosinophilic hyaline intranuclear inclusions. Owing to its widely varying clinical manifestations, NIID is frequently misdiagnosed or overlooked. However, a characteristic high-intensity corticomedullary junction signal on diffusion-weighted imaging (DWI) is often indicative of NIID. In this study, we described the case of two sisters with NIID who presented with distinct symptoms and imaging data. The younger sister showed symptoms similar to those of mitochondrial encephalopathy, with a reversible high-intensity signal from the cortex on T2 and DWI. The elder sister showed a characteristic high-signal "ribbon sign" in the corticomedullary junction on DWI. Skin biopsy confirmed that both had neuronal intranuclear inclusion. Two years later, the younger sister also developed the characteristic high-signal "ribbon sign" in the corticomedullary junction on DWI. This case study provides new insights into the complexity of NIID. The findings suggest that patients with this condition, including those belonging to the same family, may exhibit varying clinical and imaging features at different times.
RESUMO
Introduction: The lack of knowledge regarding the differences between Chinese and other ethnicities in the early manifestation of late-onset Pompe disease (LOPD) prohibits the development of an effective screening strategy. We conducted a multicenter screening study to determine LOPD prevalence in high-risk populations and define the early manifestation of LOPD in China. Methods: Between August 2020 and April 2021, the participants were prospectively identified through medical examination at 20 centers from inpatient departments and outpatient neuromuscular clinics in China. The inclusion criteria were as follows: (1) age ≥ 1 year and (2) either one of the following conditions: (a) persistent hyperCKemia, (b) muscle weakness of the axial and/or limb-girdle muscles, or (c) unexplained restrictive respiratory insufficiency (RI). Enzymatic activity of acid α-glucosidase (GAA) was measured in a dried blood spot (DBS) using a tandem mass spectrometry (MS/MS) assay. Next-generation sequencing (NGS) was used to evaluate all samples with decreased GAA activity, searching for GAA mutations and pseudodeficiency alleles. Results: Among the 492 cases, 26 positive samples (5.3%) were detected in the DBS test. Molecular studies confirmed a diagnosis of LOPD in eight cases (1.6%). Using MS/MS assay, GAA activities in individuals with pseudodeficiency could be distinguished from those in patients with LOPD. The median interval from the onset of symptoms to diagnosis was 5 years. All patients also showed RI, with a mean forced vital capacity (FVC) of 48%, in addition to axial/proximal muscle weakness. The creatine kinase (CK) level ranged from normal to no more than 5-fold the upper normal limit (UNL). LOPD with isolated hyperCKemia was not identified. Conclusion: Less frequent hyperCKemia and predominant RI depict a different early portrait of adult Chinese patients with LOPD. A modified high-risk screening strategy should be proposed for the early diagnosis of Chinese patients with LOPD.
RESUMO
Background: Dysferlinopathy refers to a group of muscle diseases with progressive muscle weakness and atrophy caused by pathogenic mutations of the DYSF gene. The pathogenesis remains unknown, and currently no specific treatment is available to alter the disease progression. This research aims to investigate important biomarkers and their latent biological pathways participating in dysferlinopathy and reveal the association with immune cell infiltration. Methods: GSE3307 and GSE109178 were obtained from the Gene Expression Omnibus (GEO) database. Based on weighted gene co-expression network analysis (WGCNA) and differential expression analysis, coupled with least absolute shrinkage and selection operator (LASSO), the key genes for dysferlinopathy were identified. Functional enrichment analysis Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to disclose the hidden biological pathways. Following that, the key genes were approved for diagnostic accuracy of dysferlinopathy based on another dataset GSE109178, and quantitative real-time polymerase chain reaction (qRT-PCR) were executed to confirm their expression. Furthermore, the 28 immune cell abundance patterns in dysferlinopathy were determined with single-sample GSEA (ssGSEA). Results: 1,579 differentially expressed genes (DEGs) were screened out. Based on WGCNA, three co-expression modules were obtained, with the MEskyblue module most strongly correlated with dysferlinopathy. 44 intersecting genes were recognized from the DEGs and the MEskyblue module. The six key genes MVP, GRN, ERP29, RNF128, NFYB and KPNA3 were discovered through LASSO analysis and experimentally verified later. In a receiver operating characteristic analysis (ROC) curve, the six hub genes were shown to be highly valuable for diagnostic purposes. Furthermore, functional enrichment analysis highlighted that these genes were enriched mainly along the ubiquitin-proteasome pathway (UPP). Ultimately, ssGSEA showed a significant immune-cell infiltrative microenvironment in dysferlinopathy patients, especially T cell, macrophage, and activated dendritic cell (DC). Conclusion: Six key genes are identified in dysferlinopathy with a bioinformatic approach used for the first time. The key genes are believed to be involved in protein degradation pathways and the activation of muscular inflammation. And several immune cells, such as T cell, macrophage and DC, are considered to be implicated in the progression of dysferlinopathy.