Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 10: 1726-1736, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31501744

RESUMO

Lithium-sulfur batteries render a high energy density but suffer from poor cyclic performance due to the dissolution of intermediate polysulfides. Herein, a lightweight nanoporous TiO2 and graphene oxide (GO) composite is prepared and utilized as an interlayer between a Li anode and a sulfur cathode to suppress the polysulfide migration and improve the electrochemical performance of Li/S batteries. The interlayer can capture the polysulfides due to the presence of oxygen functional groups and formation of chemical bonds. The hierarchically porous TiO2 nanoparticles are tightly wrapped in GO sheets and facilitate the polysulfide storage and chemical absorption. The excellent adhesion between TiO2 nanoparticles and GO sheets resulted in enhanced conductivity, which is highly desirable for an efficient electron transfer process. The Li/S battery with a TiO2/GO-coated separator exhibited a high initial discharge capacity of 1102.8 mAh g-1 and a 100th cycle capacity of 843.4 mAh g-1, which corresponds to a capacity retention of 76.48% at a current rate of 0.2 C. Moreover, the Li/S battery with the TiO2/GO-coated separator showed superior cyclic performance and excellent rate capability, which shows the promise of the TiO2/GO composite in next-generation Li/S batteries.

2.
Nanoscale Res Lett ; 14(1): 176, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140042

RESUMO

The practical application of lithium/sulfur (Li/S) batteries is hindered by the migration of soluble polysulfides (Li2Sn, 4 ≤ n ≤ 8) from cathode to anode, leading to poor electrochemical stability of the cell. To address this issue, in the present study, a TiO2/porous carbon (TiO2/PC) composite-coated Celgard 2400 separator was successfully fabricated and used as a polysulfide barrier for the Li/S battery. In TiO2/PC, the highly conductive PC with three-dimensional ordered porous structure physically constrains polysulfides and at the same time serves as an additional upper current collector. On the other hand, the TiO2 on the surface of PC chemically adsorbed polysulfides during the charge/discharge process. Due to the physical and chemical adsorption properties of TiO2/PC composite coating layer, an initial discharge capacity of 926 mAh g-1 at 0.1 C and a low fading rate (75% retention after 150 cycles) were achieved. Moreover, in the rate capability test, the discharge capacity for the TiO2/PC-modified Li/S battery was recovered to 728 mAh g-1 at 0.1 C after high-rate cycling and remained ~ 88% of the initial reversible capacity.

3.
Beilstein J Nanotechnol ; 10: 514-521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873323

RESUMO

In this work, a unique three-dimensional (3D) structured carbon-based composite was synthesized. In the composite, multiwalled carbon nanotubes (MWCNT) form a lattice matrix in which porous spherical reduced graphene oxide (RGO) completes the 3D structure. When used in Li-S batteries, the 3D porous lattice matrix not only accommodates a high content of sulfur, but also induces a confinement effect towards polysulfide, and thereby reduces the "shuttle effect". The as-prepared S-3D-RGO@MWCNT composite delivers an initial specific capacity of 1102 mAh·g-1. After 200 charging/discharge cycles, a capacity of 805 mAh·g-1 and a coulombic efficiency of 98% were maintained, implying the shuttle effect was greatly suppressed by the composite matrix. In addition, the S-3D-RGO@MWCNT composite also exhibits an excellent rate capability.

4.
Nanomaterials (Basel) ; 8(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477119

RESUMO

ZnO is a promising anode material for lithium-ion batteries (LIBs); however, its practical application is hindered primarily by its large volume variation upon lithiation. To overcome this drawback, we synthesized ZnO/graphene composites using the combination of a simple hydrothermal reaction and spray drying. These composites consisted of well-dispersed ZnO nanorods anchored to graphene. The folded three-dimensional graphene spheres provided a high conductivity, high surface area, and abundant defects. LIB with an anode composed of our novel ZnO/graphene material demonstrated a high initial discharge capacity of 1583 mAh g-1 at 200 mA g-1.

5.
Nanoscale Res Lett ; 13(1): 344, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377858

RESUMO

Due to the severe volume expansion and poor cycle stability, transition metal oxide anode is still not meeting the commercial utilization. We herein demonstrate the synthetic method of core-shell pomegranate-shaped Fe2O3/C nano-composite via one-step hydrothermal process for the first time. The electrochemical performances were measured as anode material for Li-ion batteries. It exhibits excellent cycling performance, which sustains 705 mAh g-1 reversible capacities after 100 cycles at 100 mA g-1. The anodes also showed good rate stability with discharge capacities of 480 mAh g-1 when cycling at a rate of 2000 mA g-1. The excellent Li storage properties can be attributed to the unique core-shell pomegranate structure, which can not only ensure good electrical conductivity for active Fe2O3, but also accommodate huge volume change during cycles as well as facilitate the fast diffusion of Li ion.

6.
Nanoscale Res Lett ; 13(1): 377, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470930

RESUMO

In this work, a modified separator coated with a functional layer of reduced graphene oxide (RGO) anchored by cerium oxide (CeO2) nanoparticles was developed. The superior conductivity of RGO and chemical immobilization of high-ordered sulfur-related species (mainly Li2Sn 4 ≤ n ≤ 8) of CeO2 yielded batteries with enhanced characteristics. A remarkable original capacity of 1136 mAh g-1 was obtained at 0.1 C with capacity retention ratio of 75.7% after 100 charge/discharge cycles. Overall, these data indicate that the separator with CeO2/RGO composite is promising to suppress the shuttling of polysulfides for better utilization of the active material.

7.
Nanoscale Res Lett ; 13(1): 307, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284111

RESUMO

To enhance the electrochemical performance of the lithium/sulfur batteries, a novel interlayer was prepared by coating the slurry of PPy/ZnO composite onto the surface of a separator. Owing to a three-dimensional hierarchical network structure, PPy/ZnO composite serves as a polysulfide diffusion absorbent that can intercept the migrating soluble polysulfides to enhance the electrochemical performance of the Li/S batteries. The specific capacity of the cell with PPy/ZnO interlayer remained at 579 mAh g-1 after 100 cycles at 0.2 C. This interlayer can provide novel avenues for the commercial applications of Li/S batteries.

8.
Materials (Basel) ; 11(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360425

RESUMO

Lithium-sulfur (Li-S) batteries are the most prospective energy storage devices. Nevertheless, the poor conductivity of sulfur and the shuttling phenomenon of polysulfides hinder its application. In this paper, flower-like MoS2/graphene nanocomposite is prepared and deposited on a multi-functional separator to enhance the electrochemical behavior of Li-S batteries. The results demonstrated that the MoS2/graphene-coated separator is contributing to inhibit the shuttling phenomenon of polysulfides and improve the integrity of sulfur electrode. The initial discharge capacity of the battery using MoS2/graphene-coated separator at 0.2 C was up to 1516 mAh g-1. After 100 cycles, a reversible capacity of 880 mAh g-1 and a coulombic efficiency of 98.7% were obtained. The improved electrochemical behavior can be due to the nanostructure and Mo-S bond of the MoS2/graphene composite, which can combine physical shielding and chemisorption to prohibit the shuttle effect of polysulfides. The results prove that the MoS2/graphene-coated separator has the potential for feasible application in Li-S batteries to enhance their electrochemical performance.

9.
Materials (Basel) ; 11(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223425

RESUMO

In this paper, the synthesis of the three-dimensional (3D) composite of spherical reduced graphene oxide (RGO) with uniformly distributed CeO2 particles is reported. This synthesis is done via a facile and large-scalable spray-drying process, and the CeO2/RGO materials are hydrothermally compounded with sulfur. The morphology, composition, structure, and electrochemical properties of the 3D S/CeO2/RGO composite are studied using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), Raman spectra and X-ray photoelectron spectroscopy (XPS), etc. The electrochemical performance of the composites as electrodes for lithium⁻sulfur batteries is evaluated. The S/CeO2/RGO composites deliver a high initial capacity of 1054 mAh g-1, and retain a reversible capacity of 792 mAh g-1 after 200 cycles at 0.1 C. Profiting from the combined effect of CeO2 and RGO, the CeO2/RGO materials effectively inhibit the dissolution of polysulfides, and the coating of spherical RGO improves the structural stability as well as conductivity.

10.
Materials (Basel) ; 11(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149690

RESUMO

By using ZnO nanorods as an ideal sacrificial template, one-dimensional (1-D) ZnS nanotubes with a mean diameter of 10 nm were successfully synthesized by hydrothermal method. The phase composition and microstructure of the ZnS nanotubes were characterized by using XRD (X-ray diffraction), SEM (scanning electron micrograph), and TEM (transmission electronic microscopy) analysis. X-ray photoelectron spectroscopy (XPS) and nitrogen sorption isotherms measurements were also used to study the information on the surface chemical compositions and specific surface area of the sample. The prepared ZnS nanotubes were used as anode materials in lithium-ion batteries. Results show that the ZnS nanotubes deliver an impressive prime discharge capacity as high as 950 mAh/g. The ZnS nanotubes also exhibit an enhanced cyclic performance. Even after 100 charge/discharge cycles, the discharge capacity could still remain at 450 mAh/g. Moreover, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were also carried out to evaluate the ZnS electrodes.

11.
Nanomaterials (Basel) ; 8(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096884

RESUMO

Herein, we demonstrate the fabrication of a three-dimensional (3D) polypyrrole-coated-porous graphene (PPy/PG) composite through in-situ polymerization of pyrrole monomer on PG surface. The PPy/PG displays a 3D hierarchical porous structure and the resulting PPy/PG hybrid serves as a conductive trap to lithium polysulfides enhancing the electrochemical performances. Owing to the superior conductivity and peculiar structure, a high initial discharge capacity of 1020 mAh g-1 and the reversible capacity of 802 mAh g-1 over 200 cycles are obtained for the S/PPy/PG cathode at 0.1 C, remaining the remarkable cyclic stability. In addition, the S/PPy/PG cathodes demonstrate an excellent rate performance exhibiting 477 mAh g-1 at 2 C.

12.
Nanotechnology ; 29(41): 415401, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036189

RESUMO

A three-dimensionally (3D) ordered macro-/mesoporous TiO2 (3DOM-mTiO2) was synthesized via a simple solvothermal process. 3DOM-mTiO2 was used as a sulfur carrier for cathode materials in a lithium-sulfur (Li-S) battery. The orderly interconnected macro and mesopores structure within the macropore walls yield a large pore volume and high specific surface area in 3DOM-mTiO2, which improved the sulfur loading capacity of the material. The S/TiO2 composite was synthesized as a cathode material for lithium/sulfur battery, which initially produced a high capacity of 1089 mAh g-1 and retained a value of 703 mAh g-1 after 200 cycles. An initial current rate of 0.2 C was used, which was further increased up to 2.5 C when a reversible capacity of 651 mAh g-1 was obtained. The excellent electrochemical performance can be attributed to the 3D ordered macro-/mesoporous structure of TiO2, which physically confines the soluble lithium polysulfides and diminishes the sulfur volume expansion upon cycling. In addition, the strong electrostatic attraction between the Ti-O bond and polysulfide stimulates the performance via stronger adsorption of the electrochemical reaction products.

13.
Nanomaterials (Basel) ; 8(5)2018 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734767

RESUMO

Sulfur/ethylenediamine-functionalized reduced graphene oxide (S/EDA-RGO) nanocomposites were synthesized using a simple process. Ethylenediamine (EDA) was employed as both the reducing agent and the modification component. The morphologies, microstructures, and compositions of S/EDA-RGO composites were characterized by various detection techniques. The data indicated that EDA-RGO used as scaffolds for sulfur cathodes could enhance the electronic conductivity of the composites and strengthen the adsorbability of polysulfides. Meanwhile, the electrochemical properties of both S/EDA-RGO and S/RGO composites that were used as cathodes for lithium-sulfur (Li-S) batteries were investigated. The initial discharge capacity of S/EDA-RGO composites reached 1240 mAh g−1, with reversible capacity being maintained at 714 mAh g−1 after 100 cycles. The improvement in cycling stability of S/EDA-RGO composites was further verified at different current rates. These findings demonstrated that proper surface modification of RGO by EDA reducing agent might improve the electrochemical performances of Li⁻S batteries.

14.
Nanomaterials (Basel) ; 8(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373525

RESUMO

A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g-1 at 0.1 C and can retain a capacity of 765 mAh g-1 after 100 cycles in potential range from 1 V to 3 V.

15.
Polymers (Basel) ; 10(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960778

RESUMO

A gel polymer electrolyte was formed by trapping an optimized Na⁺/Zn2+ mixed-ion aqueous electrolyte in a polyacrylonitrile nanofiber polymer matrix. This electrolyte was used in a novel aqueous sodium-ion battery (ASIB) system, which was assembled by using a zinc anode and Na4Mn9O18 cathode. The nanorod-like Na4Mn9O18 was synthesized by a hydrothermal soft chemical reaction. The structural and morphological measurement confirmed that the highly crystalline Na4Mn9O18 nanorods are uniformly distributed. Electrochemical tests of Na4Mn9O18//Zn gel polymer battery demonstrated its high cycle stability along with a good rate of performance. The battery delivers an initial discharge capacity of 96 mAh g-1, and 64 mAh g-1 after 200 cycles at a high cycling rate of 1 C. Our results demonstrate that the Na4Mn9O18//Zn gel polymer battery is a promising and safe high-performance battery.

16.
Polymers (Basel) ; 10(8)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960855

RESUMO

In the present study, a novel sulfur/lithium-ion full battery was assembled while using ternary sulfur/polyacrylonitrile/SiO2 (S/PAN/SiO2) composite as the cathode and prelithiated graphite as the anode. For anode, Stabilized Lithium Metal Powder (SLMP) was successfully transformed into lithiated graphite anode. For cathode, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that SiO2 was uniformly distributed on S/PAN composites, where SiO2 served as an effective additive due to its ultra high absorb ability and enhanced ability in trapping soluble polysulfide. The tested half-cell based on S/PAN/SiO2 composite revealed high discharge capacity of 1106 mAh g-1 after 100 cycles at 0.2 C. The full cell based on prelithiated graphite//S/PAN/SiO2 composite system delivered a specific capacity of 810 mAh g-1 over 100 cycles.

17.
Polymers (Basel) ; 10(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30966434

RESUMO

Rechargeable lithium/sulfur (Li/S) batteries have received quite significant attention over the years because of their high theoretical specific capacity (1672 mAh·g-1) and energy density (2600 mAh·g-1) which has led to more efforts for improvement in their electrochemical performance. Herein, the synthesis of a flexible freestanding sulfur/polyacrylonitrile/graphene oxide (S/PAN/GO) as the cathode for Li/S batteries by simple method via vacuum filtration is reported. The S/PAN/GO hybrid binder-free electrode is considered as one of the most promising cathodes for Li/S batteries. Graphene oxide (GO) slice structure provides effective ion conductivity channels and increases structural stability of the ternary system, resulting in excellent electrochemical properties of the freestanding S/PAN/GO cathode. Additionally, graphene oxide (GO) membrane was able to minimize the polysulfides' dissolution and their shuttle, which was attributed to the electrostatic interactions between the negatively-charged species and the oxygen functional groups on GO. Furthermore, these oxygen-containing functional groups including carboxyl, epoxide and hydroxyl groups provide active sites for coordination with inorganic materials (such as sulfur). It exhibits the initial reversible specific capacity of 1379 mAh·g-1 at a constant current rate of 0.2 C and maintains 1205 mAh·g-1 over 100 cycles (~87% retention). In addition, the freestanding S/PAN/GO cathode displays excellent coulombic efficiency (~100%) and rate capability, delivering up to 685 mAh·g-1 capacity at 2 C.

18.
Materials (Basel) ; 10(10)2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984818

RESUMO

A novel nitrogen doped mesoporous carbon (NMPC) with a hierarchical porous structure is prepared by simple carbonizing the green algae, which is applied as a host material to encapsulate sulfur for lithium/sulfur (Li/S) battery. The NMPC exhibits high pore volume as well as large specific surface area, and thus sulfur content in the S/NMPC composite reaches up to 63 wt %. When tested in a Li/S battery, the S/NMPC composite yields a high initial capacity of 1327 mAh·g-1 as well as 757 mAh·g-1 after 100 cycles at a current rate of 0.1 C, a reversible capacity of 642 was achieved even at 1 C. This good electrochemical performance of the S/NMPC composite could be attributed to a unique combination of mesopority and surface chemistry, allowing for the retention of the intermediate polysuflides within the carbon framework.

19.
Nanomaterials (Basel) ; 7(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878149

RESUMO

The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm³âˆ™g −1 ) and large specific surface area (1261.7 m²âˆ™g −1 ). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g −1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...