Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Phytomedicine ; : 153777, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34815154

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a severe diabetic complication that is the principal cause of end-stage kidney disease worldwide. Huang-Lian-Jie-Du Decoction (HLJDD) is widely used to treat diabetes clinically. However, the nephroprotective effects and potential mechanism of action of HLJDD against DN have not yet been fully elucidated. PURPOSE: This study aimed to investigate the potential roles of HLJDD in DN and elucidate its mechanisms in db/db mice. METHODS: An integrated strategy of network pharmacology, pharmacodynamics, molecular biology, and metabolomics was used to reveal the mechanisms of HLJDD in the treatment of DN. First, network pharmacology was utilized to predict the possible pathways for DN using the absorbed ingredients of HLJDD in rat plasma in silico. Then, combined with histopathological examination, biochemical evaluation immunohistochemistry/immunofluorescence assay, western blot analysis, and UPLC-Q-Orbitrap HRMS/MS-based metabolomics approach were applied to evaluate the efficacy of HLJDD against DN and its underlying mechanisms in vivo. RESULTS: In silico, network pharmacology indicated that the AGEs/RAGE pathway was the most prominent pathway for HLJDD against DN. In vivo, HLJDD exerted protective effects against DN by ameliorating glycolipid metabolic disorders and kidney injury. Furthermore, we verified that HLJDD protected against DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway for the first time. In addition, 22 potential biomarkers were identified in urine, including phenylalanine metabolism, tryptophan metabolism, glucose metabolism, and sphingolipid metabolism. CONCLUSION: These findings suggest that HLJDD ameliorates DN by regulating the AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling.

2.
Bioorg Chem ; 117: 105442, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34742027

RESUMO

The development of collateral sensitivity agents that are able to modulate P-glycoprotein (P-gp) is the most promising approaches to overcome multidrug resistance (MDR) in cancer. In this study, eight new diterpenoids of jatrophane and ingenane type, 1-8, and three known ones (9-11) were isolated from Euphorbia glomerulans. Their structures were elucidated by spectroscopic analysis and electronic circular dichroism (ECD) calculations. The MDR reversal activity evaluation of these isolates on breast cancer MCF-7/ADR cells demonstrated the four potent MDR modulators (3, 4, 5, and 9) with great chemoreversal ability and low cytotoxicity. The structure-activity relationship (SAR) analysis indicated that the presence of isobutanoyloxy group at C-8 significantly enhance reversal efficiency. Compound 5 exhibited high efficacy (EC50 = 159.5 nM) in reversing MDR resistance, being stronger than verapamil (EC50 = 302.9 nM). The MDR reversal mechanism assays revealed that 5 could promote the accumulation of Rh123 and DOX in drug-resistant cells in a certain dose-dependent manner, and inhibit P-gp transport function. In addition, the possible recognition mechanism of compound 5 and verapamil (VRP) with P-gp was predicted by molecular docking.

3.
J Nanobiotechnology ; 19(1): 374, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789284

RESUMO

BACKGROUND: Intimal hyperplasia caused by vascular injury is an important pathological process of many vascular diseases, especially occlusive vascular disease. In recent years, Nano-drug delivery system has attracted a wide attention as a novel treatment strategy, but there are still some challenges such as high clearance rate and insufficient targeting. RESULTS: In this study, we report a biomimetic ROS-responsive MM@PCM/RAP nanoparticle coated with macrophage membrane. The macrophage membrane with the innate "homing" capacity can superiorly regulate the recruitment of MM@PCM/RAP to inflammatory lesion to enhance target efficacy, and can also disguise MM@PCM/RAP nanoparticle as the autologous cell to avoid clearance by the immune system. In addition, MM@PCM/RAP can effectively improve the solubility of rapamycin and respond to the high concentration level of ROS accumulated in pathological lesion for controlling local cargo release, thereby increasing drug availability and reducing toxic side effects. CONCLUSIONS: Our findings validate that the rational design, biomimetic nanoparticles MM@PCM/RAP, can effectively inhibit the pathological process of intimal injury with excellent biocompatibility.

4.
Hortic Res ; 8(1): 234, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719678

RESUMO

Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.

5.
J Pharm Pharmacol ; 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34718677

RESUMO

OBJECTIVES: This study aimed to discover the active compounds of Sophora flavescens Ait. (SF), the anti-itch effects and underlying mechanisms of oxymatrine (OMT), one of the bioactive compounds from SF. METHODS: Dorsal root ganglion cell membrane immobilized chromatography was used to screen potential anti-pruritic active compounds from SF. The scratching behaviour was analysed to systematically study the anti-pruritic effects of OMT in chloroquine- (CQ), peptide Ser-Leu-Ile-Gly-Arg-Leu- (SLIGRL), histamine- (HIS) and allyl-isothiocyanate-(AITC)-induced itch mice models. Real-time quantitative PCR, in-vivo study and molecular docking were employed to explore the underlying mechanisms. KEY FINDINGS: All in all, 21 compounds of SF were identified and 5 potential bioactive compounds were discovered. OMT significantly reduced scratching bouts in two HIS-independent itch models induced by CQ and SLIGRL but was not effective in the HIS-induced itch model. OMT reduced scratching bouts in a dose-dependent manner and decreased the messenger RNA (mRNA) expression of transient receptor potential ankyrin 1 (TRPA1) channel in two HIS-independent itch models; in addition, OMT reduced the wipes and scratching bouts induced by AITC. CONCLUSIONS: This study discovered five potential anti-pruritic compounds including OMT in the SF extract, and OMT has strong anti-pruritic effects in HIS-independent itch via TRPA1 channel.

6.
Lancet Reg Health West Pac ; 15: 100252, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34528018

RESUMO

Background In Western developed countries, food-based dietary patterns have been associated with the risk of cardiometabolic diseases, but little is known about such associations in less developed ethnic minority regions (LEMRs), where the cardiometabolic disease burden is growing rapidly and food patterns differ substantially. Methods Between May 2018 and September 2019, we recruited 99556 participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC) Study. We measured habitual dietary intake with validated food frequency questionnaire (FFQ) and then calculated dietary pattern scores for two of the most studied a priori dietary patterns, i.e., Dietary Approaches to Stop Hypertension (DASH) and alternative Mediterranean (aMED) style diets, and three a posteriori dietary patterns. Four cardiometabolic risks, including hypertension, diabetes, dyslipidaemia and metabolic syndrome (MetS), were newly diagnosed by medical examination and blood tests. We estimated adjusted odds ratios (OR) relating various dietary pattern scores to cardiometabolic risks using marginal structural models under the guidance of directed acyclic graphs. For the above associations, we further calculated the proportion mediated by overweight (PM) using regression-based mediation analysis for better public health implications. Findings The final study sample consisted of 68834 participants. Among them, we newly diagnosed 12803 hypertension, 3527 diabetes, 16342 hyperlipidaemia, and 8198 MetS cases. Overall, all 5 dietary patterns showed considerable associations with risks of hypertension and MetS. Comparing the highest with the lowest quintiles, the DASH score showed the strongest inverse associations with risks of hypertension (OR=0.74, 95% CI:0.70-0.79; PM=10%) and MetS (OR=0.79, 95% CI:0.74-0.85; PM=35%); conversely, scores of the localized a posteriori Yunnan-Guizhou plateau dietary pattern in LEMRs showed the strongest positive associations with risks of hypertension (OR=1.44, 95% CI:1.35-1.52; PM=10%) and MetS (OR=1.35, 95% CI:1.26-1.46; PM=33%), with all P values for trend <0.001. These associations were consistent in various subgroups defined by sex, age, smoking and physical activity, but with magnitudes that differed substantially across different ethnic regions and urbanicity. By investigating the single-component effects of dietary patterns, the dairy intake component contributed a major proportion to the beneficial effects of DASH (41.9% for hypertension and 100.5% for MetS). Interpretation Substantial socioeconomic status and ethnic disparities in diet quality and related cardiometabolic risks were seen in LEMRs, with hypertension being the top diet-related cardiometabolic risk. Our findings support that DASH provides superior dietary guidance compared to aMED for reducing cardiometabolic risks in LEMRs. In particular, the dairy intake encouraged by DASH may produce considerable beneficial effects. Funding This study was funded by the National Key R&D Program of China; full funding sources listed in the acknowledgements.

7.
J Agric Food Chem ; 69(37): 10943-10951, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514791

RESUMO

Carbonyl compounds play a critical role in the pathogenesis of diabetic nephropathy (DN). Pueraria lobata (PL), also known as "Kudzu", is a widely consumed functional food or nutraceutical and has shown promise in the prevention of diabetes and complications such as DN. To explore the beneficial effects and the underlying mechanisms of PL against DN, a new strategy for in-depth metabolic profiling of carbonyl compounds in DN mice plasma by chemical derivatization combined with UPLC-Q-Orbitrap high-resolution mass spectrometry (HRMS)/MS analysis was developed for the first time. Pharmacological evaluation revealed that PL extracts containing a total of 73 identified compounds could ameliorate kidney injury and regulate abnormal glycolipid metabolism. In metabolomics analysis, 19 carbonyl compounds with significant differences were identified between DN mice and normal mice. Moreover, 12 metabolites had a tendency to return to normal levels after PL treatment. Overall, PL exerts beneficial effects on DN by regulating abnormal glycolipid metabolism and carbonyl stress, and endogenous carbonyl compounds might serve as potential biomarkers for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Pueraria , Animais , Nefropatias Diabéticas/tratamento farmacológico , Rim , Espectrometria de Massas , Metabolômica , Camundongos
8.
BMC Microbiol ; 21(1): 229, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407768

RESUMO

BACKGROUND: H. pylori is closely related to the occurrence and development of various digestive gastritis, peptic ulcer and mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori is also a class I carcinogen of gastric cancer. VacA is the only exocrine toxin of H. pylori, which plays a very important role in the pathogenesis of H. pylori. The production of VacA in natural circumstances is complex with heavy workload and low yield. Therefore, it is very important to obtain recombinant VacA protein which is stable and biologically active. This study therefore aims to explore the expression, purification and stable storage of VacA toxin of H. pylori in E.coli, and to provide experimental basis for further exploration of the role of VacA in H. pylori -induced inflammation of cancer. RESULTS: A 2502-bp fragment and VacA gene were identified. An 89.7-kDa VacA34-854 recombinant protein was expressed and purified from the recombinant engineering bacteria and was preserved stably in 50 mM acetic acid buffer (pH 2.9). The amount of the recombinant protein was larger in the inclusion bodies than in the supernatant. In addition, after a 24-h culture with VacA recombinant protein, GES-1 cells demonstrated evidence of apoptosis including early nuclear immobilization and clustering under inverted microscope and TEM. It was found that VacA recombinant protein induced apoptosis by TUNEL assay. CONCLUSIONS: A VacA recombinant protein that is stably and highly expressed and possesses pro-apoptotic activity is successfully constructed. The protein is stably preserved in 50 mM acetic acid buffer (pH 2.9).

9.
J Ethnopharmacol ; 281: 114562, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34438027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on dementia. AIM OF THE STUDY: The present study aims to investigate whether DSS treatment could alleviate diabetes-induced cognitive dysfunction, and explores its neuroprotective mechanism on db/db mice. MATERIALS AND METHODS: The female db/db mice were randomly divided into model group, DSS low-dose group and DSS high-dose group. Homologous female db/m mice were used as the control group. DSS was intragastric administrated for 15 weeks. Glucose tolerance, insulin tolerance, blood glucose and blood lipid levels were measured. Morris water maze was used to measure spatial learning and memory ability in mice. Nissl staining and Tunel staining were used to measure the changes of brain neurons, and ELISA kits were used to measure levels of inflammatory mediators (PGE2, TXB2 and LTB4). The kits detected oxidative stress (MDA, SOD, CAT, GSH-PX), nitrosative stress (NO, iNOS, TNOS) and glucose metabolism (LDH, PK, HK) levels. Western blot and immunofluorescence detected neurotrophic factors (PSD95, BDNF, NGF and SYN), apoptosis (Bcl-2, Bax, Bcl-xl, Caspase-3) and changes of ERα, O-GlcNAc, OGT, OGA levels. RESULTS: Morris water maze results showed that DSS could improve the learning and memory abilities of female db/db mice. Nissl staining showed that DSS could relieve hippocampal neurons damage of db/db mice. In addition, the serological tests showed that DSS could improve the impaired glucose tolerance and insulin resistance, while reduce hyperlipemia in db/db mice. Besides, DSS treatment increased the activities of SOD, GSH-PX, and CAT, and reduced MDA, NO, iNOs, tNOS, PGE2, TXB2 and LTB4 levels. Western blot and immunofluorescence results of PSD95, BDNF, NGF, and SYN showed that DSS could improve the expressions of neurotrophic factors. Meanwhile, Tunel staning and Western blot (Bcl-2, Bax, Bcl-xl, Caspase-3) results indicated that DSS could reduce neuronal apoptosis. Finally, Western blot (ERα, O-GlcNAc, OGA, and OGT) and immunofluorescence (ERα and O-GlcNAc) results indicated that DSS could increase the levels of ERα and OGA, decrease the levels of O-GlcNAc and OGT. CONCLUSION: DSS alleviate DE might be related to improve the abnormal O-GlcNAc-modification of ERα.

10.
Regen Biomater ; 8(4): rbab033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34285811

RESUMO

The development of nanomedicines provides new opportunities for the treatment of atherosclerosis (AS) due to their great advantages such as the improved drug solubility, enhanced bioavailability and reduced side effects. Despite these advantages, nanomedicines are still facing some challenges. The problems remain in the short circulation life, lack of specific targeting and poor drug release controllability. In order to overcome the shortages of conventional nanomedicines, the combination of biomimetic strategy with smart nanoagents has been proposed. In light with the high reactive oxygen species (ROS) level in AS microenvironment and the fact that macrophages play a critical role in the pathogenesis of AS, we fabricated ROS-responsive biomimetic nanoparticles (NPs), which camouflaged macrophage membrane (MM) on ROS-responsive NPs loaded with rapamycin (RNPs) for potential application in AS therapy. The resulting ROS-responsive biomimetic NPs (MM/RNPs) exhibited favorable hydrodynamic size with negative surface charge, retained the functional proteins from MM, and showed ROS-responsive drug release. Because of the biomimetic camouflaging on surface, MM/RNPs could effectively escape from macrophages uptake and target to inflammatory endothelial cells. Meanwhile, MM/RNPs could inhibit the proliferation of macrophages and smooth muscle cells in vitro. Furthermore, the MM-coated NPs were found to be nontoxic in both cytotoxicity assay and in vivo toxicity evaluation. Consequently, these results demonstrated that MM/RNPs could be a potential candidate of drug delivery system for safe and effective anti-AS applications.

11.
J Ovarian Res ; 14(1): 93, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256813

RESUMO

OBJECTIVE: The aim of this meta-analysis was to assess the effectiveness and safety of secondary cytoreductive surgery plus chemotherapy (SCS + CT) in recurrent ovarian cancer (ROC). Our secondary purpose was to analyze whether patients could benefit from complete resection. METHODS: We searched EMBASE, MEDLINE, the Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials, from inception to April 2021. We used appropriate scales to assess the risk of bias. Data from included studies that reported median PFS or OS were weighted by individual study sample size, and aggregated for meta-analysis. We calculated the pooled proportion of complications within 30 days after surgery. RESULTS: We identified 13 articles, including three RCTs and ten retrospective cohort studies. A total of 4572 patients were included, of which 916 patients achieved complete resection, and all patients were comparable at baseline. Compared with chemotherapy alone, SCS + CT significantly improved the PFS (HR = 0.54, 95% CI: 0.43-0.67) and OS (HR = 0.60, 95% CI: 0.44-0.81). Contrary to the results of cohort studies, the meta-analysis of RCTs showed that SCS + CT could not bring OS benefits (HR = 0.93, 95% CI: 0.66-1.3). The subgroup analysis showed the prognostic importance of complete resection. Compared with chemotherapy alone, complete resection was associated with longer PFS (HR = 0.53, 95% CI: 0.45-0.61) and OS (HR = 0.56, 95% CI: 0.39-0.81), while incomplete resection had no survival benefit. Additionally, complete resection could maximize survival benefit compared with incomplete resection (HR = 0.56, 95% CI: 0.46-0.69; HR = 0.61, 95% CI: 0.50-0.75). The pooled proportion for complications at 30 days was 21% (95% CI: 0.12-0.30), and there was no statistical difference in chemotherapy toxicity between the two groups. CONCLUSION: The review indicated that SCS + CT based regimens was correlated with better clinical prognosis for patients with recurrent ovarian cancer, but the interpretation of OS should be cautious. The meta-analysis emphasizes the importance of complete resection, suggesting that the potential benefits of prolonging survival may outweigh the disadvantages of any short-term complications associated with surgery.

12.
Acta Biochim Biophys Sin (Shanghai) ; 53(9): 1177-1188, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34244711

RESUMO

Stroke is the second leading cause of death and long-term disability worldwide, which lacks effective treatment. Perioperative stroke is associated with much higher rates of mortality and disability. The neuroprotective role of dexmedetomidine (Dex), a highly selective agonist of alpha2-adrenergic receptor, has been reported in a stroke rat model, and it was found that pretreatment of Dex before stroke could alleviate blood-brain barrier (BBB) breakdown. However, the underlying mechanisms are still unknown. As the brain endothelial cells are the main constituents of BBB and in high demand of energy, mitochondrial function of endothelial cells plays an important role in the maintenance of BBB. Given that dynamin-related protein 1 (Drp1) is a protein mediating mitochondrial fission, with mitochondrial fusion that balances mitochondrial morphology and ensures mitochondria function, the present study was designed to investigate the possible role of Drp1 in endothelial cells involved in the neuroprotective effects of Dex in ischemic stroke. Our results showed that preconditioning with Dex reduced infarction volume, alleviated brain water content and BBB damage, and improved neurological scores in middle cerebral artery occlusion rats. Meanwhile, Dex enhanced cell activity and decreased cell apoptosis in oxygen-glucose deprivation human brain microvascular endothelial cells in vitro. These protective effects of Dex were correlated with the mitochondrial morphology integrality of endothelial cells, mediated by increased phosphorylation of serine 637 in Drp1, and could be reversed by α2-adrenergic receptor antagonist Yohimbine and AMP-activated protein kinase inhibitor Compound C. These findings suggest new molecular pathways involved in the neuroprotective effects of Dex in ischemic stroke. As Dex is routinely used as a sedative drug clinically, our findings provide molecular evidence that it has perioperative neuroprotection from ischemic stroke.

13.
Food Funct ; 12(17): 7607-7618, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236368

RESUMO

Diabetic nephropathy (DN) is a microvascular complication that is becoming a worldwide public health concern. The aim of this study was to assess the effects of dietary soy isoflavone intervention on renal function and metabolic syndrome markers in DN patients. Seven databases including Medline, the Cochrane Central Register of Controlled Trials, Science Direct, Web of Science, Embase, China National Knowledge Infrastructure, and WanFang were searched for controlled trials that assessed the effects of soy isoflavone treatment in DN patients. Finally, a total of 141 patients from 7 randomized controlled trials were included. The meta-analysis showed that dietary soy isoflavones significantly decreased 24-hour urine protein, C-reactive protein (CRP), blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and fasting blood glucose (FBG) in DN patients. The standard mean difference was -2.58 (95% CI: -3.94, -1.22; P = 0.0002) for 24-hour urine protein, -0.67 (95% CI: -0.94, -0.41; P < 0.00001) for BUN, -6.16 (95% CI: -9.02, -3.31; P < 0.0001) for CRP, -0.58 (95% CI: -0.83, -0.33; P < 0.00001) for TC, -0.41 (95% CI: -0.66, -0.16; P < 0.00001) for TG, -0.68 (95% CI: -0.94, -0.42; P < 0.00001) for LDL-C, and -0.39 (95% CI: -0.68, -0.10; P = 0.008) for FBG. Therefore, soy isoflavones may ameliorate DN by significantly decreasing 24-hour urine protein, BUN, CRP, TC, TG, LDL-C, and FBG.

14.
Drug Deliv ; 28(1): 1419-1431, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34223777

RESUMO

Glucocorticoid (GC) hormone has been commonly used to treat systemic inflammation and immune disorders. However, the side effects associated with long-term use of high-dose GC hormone limit its clinical application seriously. GC hormone that can specifically target the lung might decrease the effective dosage and thus reduce GC-associated side effects. In this study, we successfully prepared human lung-targeting liposomal methylprednisolone crosslinked with nanobody (MPS-NSSLs-SPANb). Our findings indicate that MPS-NSSLs-SPANb may reduce the effective therapeutic dosage of MPS, achieve better efficacy, and reduce GC-associated side effects. In addition, MPS-NSSLs-SPANb showed higher efficacy and lower toxicity than conventional MPS.

15.
CNS Neurosci Ther ; 27(11): 1313-1326, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34255932

RESUMO

AIMS: Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein-coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. METHODS AND RESULTS: Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER-positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT-PCR and immunoblot analyses showed that the levels of GPER and phosphorylated µ-type opioid receptor (p-MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER-positive neurons in the RVM of Gper-Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER-positive neurons in the RVM could prevent mice from being in the pain persistent state. CONCLUSION: Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.

16.
Bioengineered ; 12(1): 4100-4110, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288800

RESUMO

Preeclampsia (PE) is a potentially fatal pregnancy complication; however, its pathogenesis remains unclear. Long non-coding RNAs (lncRNAs) are associated with occurrence and progression of PE. Therefore, this study aimed to explore the function of the lncRNA prospero homeobox 1-antisense RNA 1 (PROX1-AS1) and elucidate its underlying molecular mechanism of action. We found that the expression levels of PROX1-AS1 were elevated in both the placental tissues and blood samples of the patients with PE. Moreover, the results of the flow cytometry and transwell assay showed that the knockdown of PROX1-AS1 inhibited the apoptosis and promoted the migration and invasion of HTR-8/SVneo cells. We also assessed the interactions between PROX1-AS1, caspase-9, and microRNA (miR)-211-5p via dual-luciferase reporter and RNA pull-down analyses. The data indicated that PROX1-AS1 acted as a sponge for miR-211-5p to regulate the expression of caspase-9. Moreover, the expression of miR-211-5p was reduced in PE and negatively related to PROX1-AS1, while that of caspase-9 was increased in PE and negatively regulated by miR-211-5p. Furthermore, inhibition of miR-211-5p rescued the facilitation of cell apoptosis, migration and invasion induced by the knockdown of PROX1-AS1. We also found that caspase-9 improved the apoptosis rate, and suppressed the cell migration and invasion induced by the overexpression of miR-211-5p. In conclusion, the knockdown of PROX1-AS1 promoted the cell morbidity of the trophoblast cells by modulating the miR-211-5p/caspase-9 axis, which may alleviate the progression of PE. This novel regulatory network may contribute to the pathogenesis and progression of PE.


Assuntos
Caspase 9/metabolismo , Movimento Celular/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular , Feminino , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , RNA Longo não Codificante/genética , Regulação para Cima/genética
17.
mSystems ; 6(3): e0049921, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34156296

RESUMO

The entomopathogenic fungus Metarhizium robertsii can switch among parasitic, saprophytic, and symbiotic lifestyles in response to changing nutritional conditions, which is attributed to its extremely versatile metabolism. Here, we found that the Fus3-mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel fungal cascade that regulates the degradation of insect cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and enter the insect hemocoel for subsequent colonization. On the insect cuticle, Fus3-MAPK physically contacts and phosphorylates RNS1, which facilitates the entry of RNS1 into nuclei. The phosphorylated RNS1 binds to the DNA motif BM2 (ACCAGAC) in its own promoter to self-induce expression, which then activates the expression of genes for degrading cuticular proteins, chitin, and lipids. We further found that the Fus3-MAPK/RNS1 cascade also activates genes for utilizing complex and less-favored nitrogen and carbon sources (casein, colloid chitin, and hydrocarbons) that were not derived from insects, which is repressed by favored organic carbon and nitrogen nutrients, including glucose and glutamine. In conclusion, we discovered a novel regulatory cascade that controls fungal nitrogen and carbon metabolism and is implicated in the entomopathogenicity of M. robertsii. IMPORTANCE Penetration of the cuticle, the first physical barrier to pathogenic fungi, is the prerequisite for fungal infection of insects. In the entomopathogenic fungus Metarhizium robertsii, we found that the Fus3-mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel cascade that controls cuticle penetration by regulating degradation of cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and entry into the insect hemocoel. In addition, during saprophytic growth, the Fus3-MAPK/RNS1 cascade also activates utilization of complex and less-favored carbon and nitrogen sources that are not derived from insects. The homologs of Fus3-MAPK and RNS1 are widely found in ascomycete filamentous fungi, including saprophytes and pathogens with diverse hosts, suggesting that the regulation of utilization of nitrogen and carbon sources by the Fus3-MAPK/RNS1 cascade could be widespread. Our work provides significant insights into regulation of carbon and nitrogen metabolism in fungi and fungal pathogenesis in insects.

18.
Pancreas ; 50(5): 756-765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34016895

RESUMO

OBJECTIVES: This study aimed to investigate the effect and mechanism of hypoxia on pancreatic cancer (PC) cell dedifferentiation and tumorigenic potential. METHODS: Inhibition of hypoxia-inducible factor 1α (HIF-1α) and overexpression of Notch1 in PC HS766T cell lines were by lentiviral transfection. The expression of stem cell-specific markers C-X-C motif chemokine receptor 4, CD44, and Nestin was detected by immunofluorescence and Western blot assays. Cell invasion capacity was examined by Transwell assay. Tumorigenic potential was measured in an in situ tumor transplantation experiment. The expression of HIF-1α, Notch signals, and apoptosis signals was examined by Western blot assay. RESULTS: Hypoxia promoted PC cells to dedifferentiate into stem-like cells by upregulating HIF-1α and activating Notch signals. Silencing of HIF-1α significantly repressed cell dedifferentiation and invasion, whereas overexpression of Notch1 reversed the effect of HIF-1α repression. In situ tumor transplantation experiment further confirmed that hypoxia promoted tumorigenic ability through upregulating HIF-1α. Moreover, the expression of HIF-1α and Notch1 was significantly increased in human PC tissues, and high expression of HIF-1α was correlated with poor survival rate. CONCLUSIONS: Hypoxia promoted PC cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential by activating HIF-1α/Notch signaling pathway, indicating a novel role in regulating PC progression.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34052562

RESUMO

Huang-Lian-Jie-Du Decoction (HLJDD), a well-known traditional Chinese formulation, has been proved to exert neuroprotective effects, however, the bioactive components in HLJDD still remain to be elucidated. In the present study, a rapid and effective method involving live cell biospecific extraction and HPLC-Q-Orbitrap HRMS/MS was utilized to rapidly screen and identify the neuroprotective compounds from the HLJDD crude extract directly. Firstly, sixteen principal components in HLJDD crude extract were identified by HPLC-Q-Orbitrap HRMS/MS analysis. After co-incubation with PC12 cells, which have been validated as the key target cells for neurodegenerative diseases, seven compounds of them were demonstrated to exhibit binding affinity to the target cells. Furthermore, three representative compounds named baicalin, wogonoside, and berberine were subsequently verified to exert cytoprotective effects on PC12 cells injured by hydrogen peroxide via inhibiting oxidative stress and cell apoptosis, indicating that these screened compounds may possess a potential for the treatment of neurodegenerative diseases and were responsible, in part at least, for the neuroprotective beneficial effects of HLJDD. Taken together, our study provides evidence that live cell biospecific extraction coupled with LC-HRMS/MS technique is an efficient method for rapid screening potential bioactive components in traditional Chinese medicines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Técnicas Citológicas/métodos , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Animais , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Neuroprotetores/análise , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Espectrometria de Massas em Tandem
20.
J Int Med Res ; 49(5): 3000605211017063, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34038195

RESUMO

De novo germline variants of the casein kinase 2α subunit (CK2α) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(H160R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2α. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2α regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCNS.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Caseína Quinase II/genética , Criança , Genótipo , Humanos , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...