RESUMO
The reproductive toxicity of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms has attracted increasing attention from scholars. Currently, research in this field primarily focuses on vertebrates such as zebrafish and other model species. However, there is still a significant knowledge gap in the toxicity of PAHs to invertebrates and its potential mechanisms. Benzo[a]pyrene (B[a]P) is one of the most representative PAHs. In this study, female Ruditapes philippinarum (R. philippinarum) was treated with B[a]P concentrations of 0, 0.8, 4, and 20 µg/L to investigate reproductive indicators in the proliferative, growth, mature, and spawn stages. Transcriptomics was used to investigate the expression of genes associated with the reproductive endocrine system, DNA repair, autophagy, apoptosis, and ovarian development at different reproductive stages. Our results suggested that B[a]P disrupted the endocrine system by interfering with the production of steroid hormones and the transmission of estrogen signals in female R. philippinarum. The structure of the ovarian DNA duplex is severely damaged under the stress of B[a]P, and a series of cellular responses caused by DNA damage are also interfered. Additionally, we observed a reduction in the gonadosomatic index (GSI) and mature oocytes numbers after B[a]P exposed. Tissue section indicated that severe damage to the ovarian structure at mature and spawn stages. In conclusion, this study combined transcriptomic and toxicological to explore the negative effects on ovarian development induced by B[a]P, focusing on reproductive endocrine disturbance and DNA damage.
Assuntos
Bivalves , Doenças do Sistema Endócrino , Feminino , Animais , Benzo(a)pireno/toxicidade , Peixe-Zebra , Dano ao DNARESUMO
BACKGROUND: Video-assisted laparoscopic Heller myotomy (LHM) has become the standard treatment option for achalasia. While robotic surgery offering some specific advantages such as better three-dimensional (3D) stereoscopic vision, hand-eye consistency, and flexibility and stability with the endowrist is expected to be shorter in learning curve than that of LHM for surgeons who are proficient in LHM. The aim of this study was to describe a single surgeon's experience related to the transition from video-assisted laparoscopic to robotic Heller myotomy with Dor fundoplication. METHODS: We conducted a retrospective observational study based on the recorded data of the first 66 Heller myotomy performed with laparoscopic Heller myotomy with Dor fundoplication (LHMD, 26 cases) and with the robotic Heller myotomy with Dor fundoplication (RHMD, 40 cases) by the same surgeon in Department of Thoracic Surgery of The First Affiliated Hospital of Nanchang University in China. The operation time and intraoperative blood loss were analyzed using the cumulative sum (CUSUM) method. Corresponding statistical tests were used to compare outcomes of both serials of cases. RESULTS: The median operation time was shorter in the RHMD group compared to the LHMD group (130 [IQR 123-141] minutes vs. 163 [IQR 153-169]) minutes, p < 0.001). In the RHMD group, one patient (2.5%) experienced mucosal perforation, whereas, in the LHMD group, the incidence of this complication was significantly higher at 19.2% (5 patients) (p = 0.031). Based on cumulative sum analyses, operation time decreased starting with case 20 in the LHMD group and with case 18 in the RHMD group. Intraoperative blood loss tended to decline starting with case 19 in the LHMD group and with case 16 in the RHMD group. CONCLUSIONS: Both RHMD and LHMD are effective surgical procedures for symptom relief of achalasia patients. RHMD demonstrates superior outcomes in terms of operation time and mucosal perforation during surgery compared to LHMD. Proficiency with RHMD can be achieved after approximately 16-18 cases, while that of LHMD can be obtained after around 19-20 cases.
Assuntos
Acalasia Esofágica , Miotomia de Heller , Laparoscopia , Procedimentos Cirúrgicos Robóticos , Humanos , Fundoplicatura , Miotomia de Heller/métodos , Acalasia Esofágica/cirurgia , Perda Sanguínea Cirúrgica , Resultado do Tratamento , Laparoscopia/métodosRESUMO
Plant functional traits have an essential role in community formation and ecosystem function. Unlike natu-ral ecosystems, agroecosystems are affected by natural conditions and human management. Plant (i.e., crop)functional traits in the agroecosystems are thus shaped by natural and human selection. We reviewed the development of functional trait research, focusing on crop functional traits, research methods of agroecosystems based on traits, and the application of functional traits in agriculture. We then elaborated on the effect of domestication on crop trait trade-offs, the relationship between community functional structure and agroecosystem services, and the application of functional traits in weed management, cover cropping, and intercropping systems. Future research directions of crop functional traits include enriching the types of agroecosystems and crop species in studies, buil-ding up a crop functional trait database, and focusing on agroecosystem multifunctionality.
Assuntos
Produtos Agrícolas , Ecossistema , Humanos , Produtos Agrícolas/genética , Agricultura/métodosRESUMO
Single-cell spatial transcriptomics such as in-situ hybridization or sequencing technologies can provide subcellular resolution that enables the identification of individual cell identities, locations, and a deep understanding of subcellular mechanisms. However, accurate segmentation and annotation that allows individual cell boundaries to be determined remains a major challenge that limits all the above and downstream insights. Current machine learning methods heavily rely on nuclei or cell body staining, resulting in the significant loss of both transcriptome depth and the limited ability to learn latent representations of spatial colocalization relationships. Here, we propose Bering, a graph deep learning model that leverages transcript colocalization relationships for joint noise-aware cell segmentation and molecular annotation in 2D and 3D spatial transcriptomics data. Graph embeddings for the cell annotation are transferred as a component of multi-modal input for cell segmentation, which is employed to enrich gene relationships throughout the process. To evaluate performance, we benchmarked Bering with state-of-the-art methods and observed significant improvement in cell segmentation accuracies and numbers of detected transcripts across various spatial technologies and tissues. To streamline segmentation processes, we constructed expansive pre-trained models, which yield high segmentation accuracy in new data through transfer learning and self-distillation, demonstrating the generalizability of Bering.
RESUMO
Crosslinking of chitosan chains in dilute solution by natural crosslinker genipin leads to biocompatible nanogels. Here we investigated the reaction kinetics between chitosan and genipin in a 200 mM acetate buffer at 37 °C, and the structural and conformational evolutions of the nanogels during the crosslinking reaction by multi detection asymmetric flow field-flow fractionation (AF4). Upon crosslinking by genipin, the z-average hydrodynamic radius Rhz of the chitosan chains increased from 26 nm to 130 nm, while the weight average molar mass Mw increased from 2.0 × 105 g/mol to 1.8 × 107 g/mol. The crosslinking reaction appeared to be first-order and size-dependent. In particular, the intrachain crosslinking reaction was preferentially for nanogels having the larger size, leading to formation of branched chains/nanogels having a wide range of molar masses between 106 and 108 g/mol but a similar radius of gyration Rg â¼ 40 nm. For the largest nanogel fractions with M > 2.0 × 108 g/mol, both Rg and Rh showed a scaling relation with exponent 1/3 and a structure parameter Rg/Rh = 0.74, as expected for the hard sphere particle. The reaction was accompanied by a reduction of charge density and an increase in hydrophobicity of chitosan nanogels, which plays a key role in the formation of uniform size nanogels with chain density ρ(Rh) up to 0.45 g/cm3.
Assuntos
Quitosana , Quitosana/química , Nanogéis , Iridoides/químicaRESUMO
Hyperconjugative aromaticity (HA) frequently appears in metalla-aromatics, but its effect on photophysical properties remains unexplored to date. Herein, we reveal two different HA scenarios in nearly isostructural triaurated indolium and benzofuranylium compounds. The biased HAs show a discernible effect on the spatial arrangement of metal atoms and thus tailor metal parentage in frontier orbitals and the HOMO-LUMO energy gap. Theoretical calculations and structural analyses demonstrate that HA not only influences the degree of electron delocalization over the trimetalated aromatic rings but also affects π-coordination of Au(I) and intercluster aurophilic interaction. Consequently, the triaurated benzofuranylium complex shows better photoluminescence performance (quantum yield up to 49.7%) over the indolium analogue. Furthermore, four pairs of axially chiral bibenzofuran-centered trinuclear and hexanuclear gold clusters were purposefully synthesized to correlate their HA-involved structures with the chiroptical response. The triaurated benzofuranylium complexes exhibit strong circular dichroism (CD) response in solution but CPL silence even in solid film. In contrast, the hexa-aurated homologues display strong CD and intense CPL signals in both aggregated state and solid film (luminescence anisotropy factor glum up to 10-3). Their amplified chiroptical response is finally ascribed to the dominant intermolecular exciton couplings of large assemblies formed through the HA-tailored aggregation of hexanuclear compounds.
RESUMO
Inorganic metal chalcohalides, as significant semiconductor materials, have emerged as promising candidates for photoelectric applications. Herein, a new type of quaternary chalcohalide, [Ba4X][In19S32] (X = Cl, Br), has been discovered using the high-temperature halide salt flux method. Single-crystal X-ray diffraction analysis reveals that they are isostructural and crystallize in the tetragonal space group I41/amd (no. 141) featuring the octahedral hole formed by six [InS4]5- tetrahedra filled with a [ClBa4]7+ polycation, surrounded by a three-dimensional covalent framework formed by interconnecting [InS6]9- octahedra through corner-sharing and edge-sharing. Moreover, [Ba4Cl][In19S32] and [Ba4Br][In19S32] exhibit wide optical bandgaps of 2.70 eV and 2.46 eV, respectively, and moderate birefringences (0.044 @ 2100 nm and 0.042 @ 2100 nm, respectively). Specifically, [Ba4X][In19S32] (X = Cl, Br) display remarkable photocurrent responses under simulated solar-light illumination, implying their potential for photocatalytic applications. Theoretical calculations were employed to understand the interrelationship between the optical properties and electronic structure. The study on the synthesis and structure-property relationship analysis of inorganic metal chalcohalides provides new insight into the exploration of promising photoelectric materials.
RESUMO
BACKGROUND: Intestinal ultrasound (IUS) is becoming a standard assessment tool in Crohn's disease (CD), but limited data exist on its ability to predict long-term objective outcomes. Therefore, we aimed to investigate the predictive value of IUS findings for long-term transmural healing (TH) and mucosal healing (MH) in CD. METHODS: We prospectively included consecutive CD patients with active endoscopic disease and bowel wall thickness (BWT) >3.0 mm, initiating infliximab. Intestinal ultrasound parameters (ie, BWT, inflammatory mesenteric fat [i-fat], bowel blood flow and stratification) and International Bowel Ultrasound Segmental Activity Score (IBUS-SAS) were collected at baseline, after 14 to 26 weeks (visit 1, postinduction) and 44 to 56 weeks (visit 2). Transmural healing (normalization of all IUS parameters) and MH (SES-CD ≤2) were assessed at visit 2. RESULTS: One hundred twenty-nine patients were evaluated. At visit 2, 38.0% and 48.1% of patients achieved TH and MH, respectively. All the IUS parameters and IBUS-SAS showed improvement at visit 1 and visit 2 compared with the baseline (all P < .001). Multivariable analysis found that presence of i-fat at baseline (odds ratio [OR], 0.57; P = .008) and greater postinduction BWT (OR, 0.24; P < .001) were negative predictors for TH, while higher baseline (OR, 0.98; P = .013) and postinduction (OR, 0.94; P < .001) IBUS-SAS predicted negatively for MH. Postinduction BWT <4.5mm best predicted TH (AUC 0.85; P < .001), while postinduction IBUS-SAS <25.0 best predicted MH (AUC 0.82; P < .001). Moreover, colonic disease was associated with higher risk of TH (OR, 2.55; P = .027), and disease duration >24 months with lower risk of MH (OR, 0.27; P = .006). CONCLUSIONS: Baseline and postinduction IUS findings reliably predict long-term TH and MH in patients with CD receiving infliximab.
Baseline and postinduction intestinal ultrasound findings reliably predict long-term transmural and mucosal healing in patients with Crohn's disease receiving infliximab. International Bowel Ultrasound Segmental Activity Score is responsive to treatment.
RESUMO
BACKGROUND: It remains unclear whether laparoscopic multisegmental resection and anastomosis (LMRA) is safe and advantageous over traditional open multisegmental resection and anastomosis (OMRA) for treating synchronous colorectal cancer (SCRC) located in separate segments. AIM: To compare the short-term efficacy and long-term prognosis of OMRA as well as LMRA for SCRC located in separate segments. METHODS: Patients with SCRC who underwent surgery between January 2010 and December 2021 at the Cancer Hospital, Chinese Academy of Medical Sciences and the Peking University First Hospital were retrospectively recruited. In accordance with the inclusion and exclusion criteria, 109 patients who received right hemicolectomy together with anterior resection of the rectum or right hemicolectomy and sigmoid colectomy were finally included in the study. Patients were divided into the LMRA and OMRA groups (n = 68 and 41, respectively) according to the surgical method used. The groups were compared regarding the surgical procedure's short-term efficacy and its effect on long-term patient survival. RESULTS: LMRA patients showed markedly less intraoperative blood loss than OMRA patients (100 vs 200 mL, P = 0.006). Compared to OMRA patients, LMRA patients exhibited markedly shorter postoperative first exhaust time (2 vs 3 d, P = 0.001), postoperative first fluid intake time (3 vs 4 d, P = 0.012), and postoperative hospital stay (9 vs 12 d, P = 0.002). The incidence of total postoperative complications (Clavien-Dindo grade: ≥ II) was 2.9% and 17.1% (P = 0.025) in the LMRA and OMRA groups, respectively, while the incidence of anastomotic leakage was 2.9% and 7.3% (P = 0.558) in the LMRA and OMRA groups, respectively. Furthermore, the LMRA group had a higher mean number of lymph nodes dissected than the OMRA group (45.2 vs 37.3, P = 0.020). The 5-year overall survival (OS) and disease-free survival (DFS) rates in OMRA patients were 82.9% and 78.3%, respectively, while these rates in LMRA patients were 78.2% and 72.8%, respectively. Multivariate prognostic analysis revealed that N stage [OS: HR hazard ratio (HR) = 10.161, P = 0.026; DFS: HR = 13.017, P = 0.013], but not the surgical method (LMRA/OMRA) (OS: HR = 0.834, P = 0.749; DFS: HR = 0.812, P = 0.712), was the independent influencing factor in the OS and DFS of patients with SCRC. CONCLUSION: LMRA is safe and feasible for patients with SCRC located in separate segments. Compared to OMRA, the LMRA approach has more advantages related to short-term efficacy.
RESUMO
The widespread occurrence of antibiotic resistant genes (ARGs) throughout aquatic environments has raised global concerns for public health. However, the profiles and patterns of antibiotic resistome in backwater zone of cascade reservoirs, where water flow is slowed down, are still poorly understood. Here, we proposed a metagenomic analysis framework to comprehensively reveal the diversity, abundance, co-occurrence patterns and transfer direction of ARGs in cascade reservoirs system and evaluated their health risks through a procedure based on contigs. A total of 364 ARGs subtypes conferring resistance to different antibiotics classes were detected in our water samples, and the dominant ARGs (macB, bacA, vanRA, bcrA) were similar in different reservoirs. Meanwhile, the distribution of ARGs was influenced by the presence of biotic factors such as metal resistant genes (MRGs) and mobile genetic elements (MGEs), as well as abiotic factors such as dissolved oxygen (DO) and pH. Remarkably, ARGs (vanR, rosB, MexT) co-occurred with plasmids and virulence factor genes (VFGs), which can lead to the emergence and spread of highly virulent and antibiotic resistant bacteria in microbial communities. Overall, this study helps administrators to better understand the complex patterns of ARGs in backwater zones of large cascade reservoirs and provides a proper procedure for detecting the presence of high-risk of ARGs.
Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Bactérias/genética , Metagenoma , ÁguaRESUMO
A series of amine-imine cobalt complexes (Co1-Co7) has been prepared and characterized. The complexes Co3, Co4, and Co6 have a distorted tetrahedral geometry, as determined by single crystal X-ray diffraction. In the presence of ethylaluminum sesquichloride (EASC), Co3 exhibited ultra-high activity toward butadiene (Bd) polymerization (up to 7813 kgpolymer mol-1 h-1). The activity is higher than any yet recorded for which yield high cis-1,4 polybutadiene by the well-defined late-transition metal catalytic system. The catalyst also exhibited excellent tolerance towards the ratio of Co/Bd and broad temperature stability. At a ratio of Bd/Co3 = 50 000, the complexes Co1-3 can afford polybutadiene with yields higher than 96% within 2 hours. At -20 °C to 100 °C, the complex Co3 afforded relatively high polymer yields at low catalyst concentrations (Bd/Co3 = 25 000). In addition, all polymers showed a relatively high molecular weight (up to 1.06 × 106 g mol-1).
RESUMO
By experimental methods, 26 specimens were designed to conduct elastic and elastic-plastic buckling tests on cylindrical shells containing cracks. This study discusses the influence of factors such as the length-diameter ratio, the diameter-thickness ratio, the crack length, the inclination of the crack, etc., on the buckling load. Additionally, finite element models were established to compare with experimental results. For the PMMA cylindrical shell, the results showed that as the length-diameter ratio of the cylindrical shell increased, the buckling load first decreased and then increased. For the 6063 aluminum alloy cylindrical shell, with increasing length-diameter ratio, diameter-thickness ratio, and crack length of the cylindrical shell, the buckling load decreased accordingly. However, concerning the crack inclination, as the crack inclination increased, the buckling load increased accordingly. This indicates that the larger the crack inclination, the higher the load capacity of the cylindrical shell containing cracks. Through finite element simulations of cylindrical shells with cracks, it was found that through compressive mechanical properties, both elastic and elastic-plastic buckling loads yielded results that are closer to the experimental results. Additionally, the inclusion of contact effects in numerical simulations further improved the agreement with the experimental results, and the variation trend of the buckling load in the finite element simulation was consistent with the experimental results. The research findings provide valuable references for the assessment of load capacity in structures containing cracks.
RESUMO
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Assuntos
Halogenação , Paládio , Estrutura Molecular , Paládio/química , Aminação , Catálise , PeptídeosRESUMO
With breakthroughs in the power electronics industry, the stability and rapid power regulation of wind power generation have been improved. Its power generation technology is becoming more and more mature. However, there are still weaknesses in the operation and control of power systems under the influence of extreme weather events, especially in real-time power dispatch. To optimally distribute the power of the regulation resources in a more stable manner, a wind energy forecasting-based power dispatch model with time-control intervals optimization is proposed. In this model, the outage of the wind energy under extreme weather is analyzed by an autoregressive integrated moving average model (ARIMA). Additionally, the other regulation resources are used to balance the corresponding wind power drop and power mismatch. Meanwhile, an algorithm names weighted mean of vectors (INFO) is employed to solve the real-time power dispatch and minimize the power deviation between the power command and real output. Lastly, the performance of the proposed optimal real-time power dispatch is executed in a simulation model with ten regulation resources. The simulation tests show that the combination of ARIMA and INFO can effectively improve the power control performance of the PD-WEF system.
RESUMO
Among the various kinds of spin defects in hexagonal boron nitride (hBN), the negatively charged boron vacancy (VB-) spin defect that can be site-specifically generated is undoubtedly a potential candidate for quantum sensing, but its low quantum efficiency restricts its practical applications. Here, we demonstrate a robust enhancement structure called reflective dielectric cavity (RDC) with advantages including easy on-chip integration, convenient processing, low cost and suitable broad-spectrum enhancement for VB- defects. In the experiment, we used a metal reflective layer under the hBN flakes, filled with a transition dielectric layer in the middle, and adjusted the thickness of the dielectric layer to achieve the best coupling between RDC and spin defects in hBN. A remarkable 11-fold enhancement in the fluorescence intensity of VB- spin defects in hBN flakes can be achieved. By designing the metal layer into a waveguide structure, high-contrast optically detected magnetic resonance (ODMR) signal (â¼21%) can be obtained. The oxide layer of the RDC can be used as the integrated material to implement secondary processing of micro-nano photonic devices, which means that it can be combined with other enhancement structures to achieve stronger enhancement. This work has guiding significance for realizing the on-chip integration of spin defects in two-dimensional materials.
RESUMO
Nuclear factor erythroid 2-related factor 3 (Nrf3) is increasingly implicated in multiple types of cancer; however, its function in triple-negative breast cancer (TNBC) remains unclear. This study aimed to examine the role of Nrf3 in TNBC. Compared with adjacent normal tissues, TNBC tissues expressed higher levels of Nrf3, and its expression was negatively correlated with survival time. Additionally, Nrf3 knockdown reduced the proliferation and migration of TNBC cells, whereas overexpression of Nrf3 had the opposite effects in vitro and in vivo. Moreover, functional enrichment of TNBC cells overexpressing Nrf3 allowed for the identification of numerous genes and pathways that were altered following Nrf3 overexpression. Further study showed that overexpression of Nrf3 activated the PI3K/AKT/mTOR signaling pathway and regulated the expression of proteins associated with epithelial-mesenchymal transition. Nrf3 was found to directly bind to p110α promoter regions, as evidenced by luciferase reporter and chromatin immunoprecipitation assays. Furthermore, PI3K inhibitors partially decreased the proliferation and migration of the Nrf3 overexpressing TNBC cells. In conclusion, Nrf3 enhances cellular proliferation and migration by activating PI3K/AKT/mTOR signaling pathways, highlighting a novel therapeutic target for TNBC.
RESUMO
Dissolved organic matter (DOM) is an essential component of river pollutants. Under the new situation of black water treatment in urban areas of China, in view of the widespread problem of unclear sources of multiple pollutants, further analysis of DOM components in urban rivers from the molecular level is a key link to deeply explore the sources, causes, and mechanism of river pollution so as to achieve efficient management. In this study, the urban rivers in the central city were selected as the research object, and a total of five rivers were selected that were seriously affected by the discharge sewage of four combined and separated sewer systems, respectively. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), this study identified the molecular formulae and analyzed the elemental composition and compound groups of DOM in water and sediment samples at each site in dry and wet weather. The results showed that:â although CHO molecules and lignins were the main compounds in the urban river DOM, the high proportion of lipids, proteins, and heteroatomic compounds (especially CHOS molecules) revealed the anthropogenic pollution in rivers, which also led to the increase in DOC, TN, and NH+4-N. â¡Surfactants such as C17H28O3S and C18H30O3S were ubiquitous in all urban rivers, which could be used as markers of domestic wastewater pollution. â¢In wet weather, the rainfall inputs, storm runoffs, and hydraulic disturbance jointly led to the increase in the proportion of CHO molecules and lignin compounds; the decrease in proteins and lipids; the rise of DOC, TN, and NH+4-N concentrations in river water; and the decrease in DOC, TN, and NH+4-N concentrations and proteins and lipids in river sediments. â£The abundance of multi-heteroatomic compounds and condensed aromatics in the combined sewer system was higher than that in the separated sewer system, which may have been more severely polluted by domestic wastewater and storm runoff, especially kitchen wastewater. This study provides new insight for clarifying the critical causes of pollution in the new stage and provides an essential basis for further precision prevention and control of water pollution.
RESUMO
Epilepsy is a common neurological disease caused by synchronous firing of hyperexcitable neurons. Currently, patients with epilepsy are typically treated with antiseizure medicines that work by interrupting the hyperexcitability or hypersynchrony of localized neurons or by inhibiting excitatory neurotransmission. However, these drugs do not treat the underlying causes of epilepsy, and nearly one-third of patients have seizures that cannot be controlled by these medications. Animal and clinical evidence suggests that inflammation caused by neuronal and non-neuronal cells within the epilepsy lesion could play a central role in seizure disorders. Here we report a gas-filled nanobubble (NB) conjugated with diammonium glycyrrhizinate (DG) drugs and sphingosine-1-phosphate (S1P) molecules (S1P@DG-NBs) on the lipid shell for targeted therapy and real-time ultrasound visualization applications against neuroinflammatory injury. Affinity of S1P@DG-NBs for the S1P receptor endows these NBs with enhanced targeting capability to the neuroinflammatory microenvironment of epilepsy, where the DG drugs modulate endothelium-microglia-neuron inflammation by inhibiting high-mobility group box 1 molecules and downregulating the Toll-like receptor 4 signaling pathway, resulting in anti-inflammatory M2 microglia that exert anti-epilepsy effects. Our results show that this technology can enhance visualization of epileptic brain and deliver drugs with anti-inflammatory and immunomodulatory properties to ameliorate seizures symptoms.
Assuntos
Epilepsia , Doenças Neuroinflamatórias , Animais , Humanos , Microglia , Epilepsia/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/uso terapêutico , Neurônios/metabolismoRESUMO
BACKGROUND: Prolonged intensive care unit (ICU) stays consume medical resources and increase medical costs. This study identified risk factors associated with prolonged postoperative intensive care unit (ICU) stay in children with total anomalous pulmonary venous connection (TAPVC). METHODS: The medical records of 85 patients who underwent surgical repair of TAPVC were retrospectively analyzed. The patients were divided into prolonged-stay and standard-stay groups. The prolonged stay group included all patients who exceeded the 75th percentile of the ICU stay duration, and the standard stay group included all remaining patients. The effects of patient variables on ICU stay duration were investigated using univariate and logistic regression analyses. RESULTS: Patient median age was 41 (18-103) days, and median weight was 3.80 (3.30-5.35) kg.Postoperative duration of ICU stay was 11-68 days in the prolonged stay group (n = 23) and 2-10 days in the standard stay group (n = 62). Lower preoperative pulse oximetry saturation (SpO2), higher intraoperative plasma lactate levels, and prolonged postoperative mechanical ventilation were independent risk factors for prolonged ICU stay. Preoperative SpO2 < 88.5%, highest plasma lactate value > 4.15 mmol/L, and postoperative mechanical ventilation duration was longer than 53.5 h, were associated with increased risk of prolonged ICU stay. Young age, low body weight, subcardiac type, need for vasoactive drug support, emergency surgery, long anesthesia time, low SpO2 after anesthesia induction, long cardiopulmonary bypass (CPB) and aortic clamp times, high lactate level, low temperature, large volume of ultrafiltration during CPB, large amounts of chest drainage, large red blood cells (RBCs) and plasma transfusion, and postoperative cardiac dysfunction may be associated with prolonged ICU stay. CONCLUSIONS: Lower preoperative SpO2, higher intraoperative plasma lactate levels, and prolonged postoperative mechanical ventilation were independent risk factors for prolonged ICU stay in children with TAPVC. When SpO2 was lower than 88.5%, the highest plasma lactate value was more than 4.15 mmol/L, and the postoperative mechanical ventilator duration was longer than 53.5 h, the risk of prolonged ICU stay increased. Improved clinical management, including early diagnosis and timely surgical intervention to reduce hypoxia time and protect intraoperative cardiac function, may reduce ICU stay time.
Assuntos
Transfusão de Componentes Sanguíneos , Síndrome de Cimitarra , Criança , Humanos , Adulto , Estudos Retrospectivos , Plasma , Síndrome de Cimitarra/cirurgia , Ácido Láctico , Anestesia Geral , Unidades de Terapia IntensivaRESUMO
Fibroblast growth factor 2 (FGF-2) is not only an angiogenic factor, but also a mitogen for epidermal keratinocytes. FGF-2 has been shown to be positively immunoreactive in the basal layer of psoriatic lesions. In previous work, we used the Escherichia coli (E. coli) expression system to biosynthesize a biologically active anti-FGF-2 nanobody (Nb) screened by phage display technology, but the low yield limited its clinical application. In this study, we aimed to increase the yield of anti-FGF-2 Nb, and evaluate its therapeutic potential for psoriasis by inhibiting FGF-2-mediated mitogenic signaling in psoriatic epidermal keratinocytes. We demonstrated a 16-fold improvement in the yield of anti-FGF-2 Nb produced in the Pichia pastoris (P. pastoris) compared to the E. coli expression system. In vitro, the FGF-2-induced HaCaT cell model (FHCM) was established to mimic the key feature of keratinocyte overproliferation in psoriasis. Anti-FGF-2 Nb was able to effectively inhibit the proliferation and migration of FHCM. In vivo, anti-FGF-2 Nb attenuated the severity of imiquimod (IMQ)-induced psoriatic lesions in mice, and also improved the inflammatory microenvironment by inhibiting the secretion of inflammatory cytokines (IL-1ß, IL-6, IL-23, and TNF-α), chemokines (CXCL1 and CCL20), and neutrophil infiltration in skin lesions. These were mainly related to the suppression of FGF-2-mediated mitogenic signaling in psoriatic keratinocytes. In conclusion, we have improved the production of anti-FGF-2 Nb and demonstrated the modality of attenuating the abnormal proliferative behavior of psoriatic keratinocytes by inhibiting FGF-2-mediated mitogenic signaling, which offers the possibility of treating psoriasis.