Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
1.
J Hazard Mater ; 423(Pt B): 127151, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536845

RESUMO

Wastewater from pharmaceutical and related industries contains many residual pharmaceutical components rich in color and high COD contents, which cannot be removed through the traditional wastewater treatment processes. Recently, microbial electrolysis ultraviolet cell (MEUC) process has shown its promising potential to remove recalcitrant organics because of its merits of wide pH range, iron-free, and without complications of iron sludge production. However, its application to the real pharmaceutical-rich industrial wastewater is still unknown. In this study, the MEUC process was validated with real ciprofloxacin-rich (6863.79 ± 2.21 µg L-1) industrial wastewater (6840 ± 110 mg L-1 of COD). The MEUC process achieved 100% removal of ciprofloxacin, 100% decolorization, and 99.1% removal of COD within 12, 60 and 30 h, respectively, when it was operated at pH-controlled at 7.8, applied voltage of 0.6 V, UV intensity of 10 mW cm-2, and cathodic aeration velocity of 0.005 mL min-1 mL-1. Moreover, fluorescence analysis showed that protein- and humic-like substances in such wastewater were effectively removed, providing further evidence of its high treatment efficiency. Furthermore, eco-toxicity testing with luminescent bacteria Vibro Feschri confirmed that the treated effluent was utterly non-toxic. The results demonstrated the broad application potential of MEUC technology for treating industrial wastewater.

2.
Eur J Med Chem ; 227: 113967, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752953

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), a known immunosuppressive enzyme that catalyzes the rate-limiting step in the oxidation of tryptophan (Trp) to kynurenine (Kyn), has received increasing attention as an attractive immunotherapeutic target for cancer therapy. Up to now, eleven small-molecule IDO1 inhibitors have entered clinical trials for the treatment of cancers. In addition, proteolysis targeting chimera (PROTAC) based degraders also provide prospects for cancer therapy. Herein we present a comprehensive overview of the medicinal chemistry strategies and potential therapeutic applications of IDO1 inhibitors in nonclinical trials and IDO1-PROTAC degraders.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34797767

RESUMO

Accurate evaluation of the treatment result on X-ray images is a significant and challenging step in root canal therapy since the incorrect interpretation of the therapy results will hamper timely follow-up which is crucial to the patients' treatment outcome. Nowadays, the evaluation is performed in a manual manner, which is time-consuming, subjective, and error-prone. In this paper, we aim to automate this process by leveraging the advances in computer vision and artificial intelligence, to provide an objective and accurate method for root canal therapy result assessment. A novel anatomy-guided multi-branch Transformer (AGMB-Transformer) network is proposed, which first extracts a set of anatomy features and then uses them to guide a multi-branch Transformer network for evaluation. Specifically, we design a polynomial curve fitting segmentation strategy with the help of landmark detection to extract the anatomy features. Moreover, a branch fusion module and a multi-branch structure including our progressive Transformer and Group Multi-Head Self-Attention (GMHSA) are designed to focus on both global and local features for an accurate diagnosis. To facilitate the research, we have collected a large-scale root canal therapy evaluation dataset with 245 root canal therapy X-ray images, and the experiment results show that our AGMB-Transformer can improve the diagnosis accuracy from 57.96% to 90.20% compared with the baseline network. The proposed AGMB-Transformer can achieve a highly accurate evaluation of root canal therapy. To our best knowledge, our work is the first to perform automatic root canal therapy evaluation and has important clinical value to reduce the workload of endodontists.

4.
Asian J Androl ; 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34806654

RESUMO

To explore the relationship between genetic polymorphisms of metabolic enzymes such as CYP1A1, CYP2D6, GSTM1, GSTT1, and GSTP1 and idiopathic male infertility. By observing the efficacy of antioxidants in the treatment of idiopathic male infertility, the effect of metabolic enzyme gene polymorphisms on antioxidant therapy in patients with idiopathic male infertility was prospectively studied. This case-control study included 310 men with idiopathic infertility and 170 healthy controls. The cytochrome P450 1A1 (CYP1A1), cytochrome P450 2D6 (CYP2D6), glutathione S-transferase M1 (GSTM1), glutathione S-transferase T1 (GSTT1), and glutathione S-transferase P1 (GSTP1) genotypes in peripheral blood samples were analyzed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). The idiopathic male infertility group was treated with vitamin C, vitamin E, and coenzyme Q10 for 3 months and followed up for 6 months. GSTM1(-), GSTT1(-), and GSTM1/T1(-/-) in the idiopathic male infertility groups were more common than those in the control group. The sperm concentration, motility, viability, mitochondrial membrane potential (MMP), and seminal plasma total antioxidant capacity (T-AOC) level in patients with GSTM1(-), GSTT1(-), and GSTM1/T1(-/-) were lower than those in wild-type carriers, and the sperm DNA fragmentation index (DFI), 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and malondialdehyde (MDA) and nitric oxide (NO) levels were higher. Therefore, oxidative damage may play an important role in the occurrence and development of idiopathic male infertility, but antioxidant therapy is not effective in male infertility patients with GSTM1 and GSTT1 gene deletions.

5.
Front Cardiovasc Med ; 8: 724378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765651

RESUMO

Background: Paroxysmal atrial fibrillation (AF) is closely related to pathophysiologic processes and clinical outcomes. However, it is uncertain whether cryoablation of pulmonary veins isolation is effective and safe for patients with symptomatic and drug refractory AF episodes of <24-h duration. Methods: The patients were designed into Group A (253 patients with paroxysmal AF episodes of <24-h duration) and Group B (253 patients with paroxysmal AF lasting for 24 h or longer) on a 1:1 basis by identical propensity scores. Mortality, stroke/transient ischemic attack (TIA), and complications relevant to the cryoablation procedure were compared, and recurrence of atrial tachyarrhythmia was analyzed for clinical independent predictors. Results: The rate of atrial tachyarrhythmia recurrence was 21.74% in Group A and 30.04% in Group B, respectively (P = 0.042). At 12-month follow-up from the procedure, lower incidences of stroke/TIA endpoint of the patients were observed in Group A compared with Group B by Kaplan-Meier analysis [HR 0.34 (0.13-0.87), P = 0.025]. No significant differences in mortality and complications relevant to the cryoablation procedure were observed between Group A and Group B. Moreover, adjusted multivariable Cox regression analysis showed that <24-h paroxysmal AF type (HR 0.644, 95% CI: 0.455-0.913, P = 0.014) and left atrium diameter (LAD) (>40 mm) (HR 1.696, 95% CI: 1.046-2.750, P = 0.032) were independently associated with the incidence of recurrence of atrial tachyarrhythmia in the study. Conclusion: Our findings indicated that <24-h paroxysmal AF type was obviously associated with an increased success rate of cryoablation and reduced incidence of stroke/TIA during the follow-up period. Therefore, there is superior effectiveness and similar safety in patients with AF episodes of <24-h duration compared with patients with longer paroxysmal AF duration.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34762254

RESUMO

Rampant corruption exists in China's energy-intensive industries. However, we know little about the nexus of corruption and enterprise green innovation in China's energy-intensive industries. This paper discusses the impact of anti-corruption on enterprises' green innovation and its effect margin. Analyzing the panel data of Chinese listed enterprises in energy-intensive industries from 2009 to 2017, we find that anti-corruption played a positive role in stimulating enterprises' green innovation investments in energy-intensive industries. Then we adopt the instrumental variable approach and difference-in-differences model to alleviate the endogeneity problem. Moreover, we find that research and development investments from state-owned, high-tech enterprises and enterprises in the regions with more government intervention or weaker intellectual property protection were more prominent after the anti-corruption campaign. Finally, political connection played an intermediary role in this process, in which only the government-official political connection worked. Our results highlight the roles of enterprises' attributes and environmental characteristics as important factors in the relationship between anti-corruption and green innovation investments. Policymakers should enhance the control of corruption to boost green innovation in energy-intensive industries.

7.
Nat Prod Res ; : 1-9, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592853

RESUMO

Bioactivity-guided fraction of an extract of Sophora flavescens to identify antibacterial compounds against Acinetobacter baumannii, led to the isolation of two new compounds, (2″R)-5-methoxy-7-hydroxy-8-lavandulylchromone (13) and (2S,ßS)-(-)-sophobiflavonoid CE (19), and 18 known flavonoids, (6aR,11aR)-(-)-maackiain (1), (2S)-(-)-8-prenylnaringenin (2), (2S)-(-)-exiguaflavanone K (3), (2S)-(-)-sophoraflavanone G (4), (2S)-(-)-leachianone A (5), (2S)-(-)-kushenol E (6), (2S)-(-)-leachianone G (7), (±)-kushenol F (8), (2S)-(-)-kurarinone (9), (2S)-(-)-kurarinol (10), (2 R,3R)- (+)-3,7,4'-trihydroxy-5-methoxy-8-prenylflavanone (11), (2S)-(-)-isoxanthohumol (12), (2S)-(-)-2'-methoxykurarinone (14), (2 R,3R)-(+)-kushenol I (15), calycosin (16), kuraridin (17), (2S)-(-)-kushenol A (18), and trifolirhizin (20). Their structures were elucidated based on NMR, MS, and CD spectroscopic analysis. Among them, 1, 2, 5, and 15 exerted modest antibacterial activity against A. baumannii, with MIC95 of 128-256 µg/mL for 2 and 256-512 µg/mL for 1, 5 and 15.

8.
Cryobiology ; 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648777

RESUMO

A significant proportion of patients with recurrent atrial fibrillation (AF) require repeat radiofrequency (RF) ablation after cryoballoon (CB) ablation. However, little is known about the pulmonary vein (PV) potential reconnection to left atrium and localization of gaps in the initial lesion sets following cryoablation in patients with recurrent AF. The data of 29 consecutive patients with repeat RF ablation for recurrent AF were analyzed. During the second ablation procedures, PV foci of AF were explored in 116 PVs by the CARTO system. All patients had complete PV isolation from initial cryoablation procedure. The fluoroscopy duration, mean cryoablation time and mean cryoablation frequency were lowest for the right superior pulmonary vein (RSPV) (58.69 ± 9.18 s, 185.10 ± 49.25 s and 1.07 ± 0.26; p = 0.024, p = 0.042 and p = 0.032). A significantly higher incidence of conduction gaps per patient was found for the RSPVs compared to the other PVs (p < 0.05 or p < 0.01). For RSPVs, it seemed that gaps were predominantly located at the anterior segment (22 gaps) and inferior segment (22 gaps). RSPV reconnection was independently related to a lower risk of major adverse events after the second ablation during follow up in the study patients (HR 0.275, 95%CI 0.078-0.967, p = 0.044). AF recurrence in patients after cryoablation is significantly associated with conduction gaps in the anterior and inferior segments of RSPVs. Various ablation strategies of close touch of CB on anterior and inferior segments of RSPV ostium, more freezing time and frequency for RSPV may help achieving durable PV isolation during follow up.

9.
Org Biomol Chem ; 19(34): 7475-7479, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612366

RESUMO

A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of ß-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.

10.
Nat Commun ; 12(1): 5835, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611149

RESUMO

Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm-2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm-2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which "locks" sulfur-a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates-from being dissolved during high-rate electrolysis.

11.
Natl Sci Rev ; 8(1): nwaa149, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34691553

RESUMO

Salt stress is a major environmental factor limiting plant growth and productivity. We recently discovered an important new salt tolerance pathway, where the cell wall leucine-rich repeat extensins LRX3/4/5, the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23 and receptor-like kinase FERONIA (FER) function as a module to simultaneously regulate plant growth and salt stress tolerance. However, the intracellular signaling pathways that are regulated by the extracellular LRX3/4/5-RALF22/23-FER module to coordinate growth, cell wall integrity and salt stress responses are still unknown. Here, we report that the LRX3/4/5-RALF22/23-FER module negatively regulates the levels of jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). Blocking JA pathway rescues the dwarf phenotype of the lrx345 and fer-4 mutants, while disruption of ABA biosynthesis suppresses the salt-hypersensitivity of these mutants. Many salt stress-responsive genes display abnormal expression patterns in the lrx345 and fer-4 mutants, as well as in the wild type plants treated with epigallocatechin gallate (EGCG), an inhibitor of pectin methylesterases, suggesting cell wall integrity as a critical factor that determines the expression pattern of stress-responsive genes. Production of reactive oxygen species (ROS) is constitutively increased in the lrx345 and fer-4 mutants, and inhibition of ROS accumulation suppresses the salt-hypersensitivity of these mutants. Together, our work provides strong evidence that the LRX3/4/5-RALF22/23-FER module controls plant growth and salt stress responses by regulating hormonal homeostasis and ROS accumulation.

13.
Viruses ; 13(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34696477

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.

14.
Environ Int ; 158: 106889, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619534

RESUMO

Eutrophication-induced water deoxygenation occurs continually in coastal oceans, and alters community structure, metabolic processes, and the energy shunt, resulting in a major threat to the ecological environment. Seasonal deoxygenation events have occurred in the Bohai Sea (China), however, how these affect the functional activity of microorganisms remains unclear. Here, through the use of absolute quantification of 16S rRNA genes amplicon sequencing and metatranscriptomics approaches, we investigated the structure of the microbial community and the patterns of transcriptional activity in deoxygenated seawaters. The dominant phyla were Proteobacteria (average value, 1.4 × 106 copies ml-1), Cyanobacteria (3.7 × 105 copies ml-1), Bacteroidetes (2.7 × 105 copies ml-1), and the ammonia-oxidizing archaea Thaumarchaeota (1.9 × 105 copies ml-1). Among the various environmental factors, dissolved oxygen, pH and temperature displayed the most significant correlation with microbial community composition and functional activity. Metatranscriptomic data showed high transcriptional activity of Thaumarchaeota in the deoxygenated waters, with a significant increase in the expression of core genes representing ammonia oxidation, ammonia transport, and carbon fixation (3-hydroxypropionic acid/4-hydroxybutyric acid cycle) pathways. The transcripts of Cyanobacteria involved in photosynthesis and carbon fixation (Calvin-Benson-Bassham cycle) significantly decreased in low oxygen waters. Meanwhile, the transcripts for the ribulose bisphosphate carboxylase-encoding gene shifted from being assigned to photoautotrophic to chemoautotrophic organisms in surface and bottom waters, respectively. Moreover, the transcription profile indicated that heterotrophs play a critical role in transforming low-molecular-weight dissolved organic nitrogen. Elevated abundances of transcripts related to microbial antioxidant activity corresponded to an enhanced aerobic metabolism of Thaumarchaeota in the low oxygen seawater. In general, our transcriptional evidences showed a population increase of Thaumarchaeota, especially the coastal ecotype of ammonia oxidizers, in low oxygen aquatic environments, and indicated an enhanced contribution of chemolithoautotrophic carbon fixation to carbon flow.

15.
Phytomedicine ; 93: 153765, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34610527

RESUMO

BACKGROUND: Hyperuricemia (HUA) is an important risk factor for gout, renal dysfunction and cardiovascular diseases. The whole plant of Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, namely Persicaria capitata herba, is a well-known ethnic herb with potent therapeutic effects on urinary tract infections and urinary calculus, yet previous reports have only focused on its effect on urinary tract infections. PURPOSE: To evaluate the therapeutic potential of P. capitata herba against gout by investigating its antihyperuricemia and antigouty arthritis effects and possible mechanisms. METHODS: The ethanol extract (EP) and water extract (WP) of P. capitata herba were prepared by extracting dried and ground whole plants of P. capitata with 75% ethanol and water, respectively, followed by removal of solvents and characterization by UHPLC-Q-TOF/MS. The antihyperuricemia and antigouty arthritis effects of the two extracts were evaluated in a potassium oxonate- and hypoxanthine-induced hyperuricemia mouse model and a monosodium urate crystal (MSUC)-induced acute gouty arthritis mouse model, respectively. The mechanisms were investigated by testing their effects on the expression of correlated proteins (by Western blot) and mRNAs (by RT-PCR). RESULTS: UHPLC-HRMS fingerprinting and two chemical markers (i.e., quercetin and quercitrin) determination were used for the characterization of the WP and EP extracts. Both WP and EP extracts showed pronounced antihyperuricemia activities, with a remarkable decline in serum uric acid and a marked increase in urine uric acid in hyperuricemic mice. Unlike the clinical xanthine oxidase (XOD) inhibitor allopurinol, WP and EP did not show any distinct renal toxicities. The underlying antihyperuricemia mechanism involves the inhibition of the activity and expression of XOD and the downregulation of the mRNA and protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1). The extracts of P. capitata herba also demonstrated remarkable anti-inflammatory activity in MSUC-induced acute gouty arthritis mice. The mechanism might involve inhibitory effects on the expression of proinflammatory factors. CONCLUSIONS: The extracts of P. capitata herba possessed pronounced antihyperuricemia and antigouty arthritis effects and were, therefore, promising natural medicines for hyperuricemia-related disorders and gouty arthritis. The use of P. capitata herba for the treatment of urinary calculus may be, at least to some degree, related to its potential as an antihyperuricemia and antigouty arthritis drug.


Assuntos
Artrite Gotosa , Hiperuricemia , Animais , Artrite Gotosa/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Camundongos , Ácido Oxônico , Extratos Vegetais/farmacologia , Ácido Úrico , Xantina Oxidase
16.
Cell Tissue Res ; 386(3): 661-677, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34599689

RESUMO

Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.

17.
J Hazard Mater ; 416: 125905, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492840

RESUMO

Bio-electro-Fenton is emerging as an alternative technology for the efficient and cost-effective removal of refractory micropollutants. Though promising, there are still several challenges that limit its wide application, including acidic operating conditions (pH at 2-3), the addition of supporting electrolytes (e.g., Na2SO4), and the issue of iron sludge generation. To address these challenges, a novel hybrid persulfate-photo-bioelectrochemical (PPBEC) system is proposed to remove model micropollutants (carbamazepine and clorfibric acid), from secondary effluent at low persulfate (PS) dosage and neutral pH. The effect of crucial operating parameters on the process was studied, including input voltage, cathodic aeration velocity, and PS dose. Under optimal conditions (0.6 V, 0.005 mL min-1 mL-1 and 1 mM), the PPBEC system achieved approx. 0.56-1.71 times greater micropollutant removal with 93% lower energy consumption when compared to the individual processes (UV/PS and PBEC). The improved performance was attributed to a faster production of sulfate radicals by UV irradiation, hydrogen peroxide activation and single-electron reduction, and hydroxyl radicals generated by UV irradiation. Furthermore, the transformation products of carbamazepine and clorfibric acid were identified and the probable pathways are proposed. Finally, the ecotoxicity of the PPBEC treated effluent was assessed by using Vibrio Fischeri, which exhibited a non-toxic effect.


Assuntos
Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
18.
Nanomaterials (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578608

RESUMO

This study presents a strategy to remove tetracycline by using magnetite-activated persulfate. Magnetite (Fe3O4) was synthesized at high purity levels-as established via X-ray diffractometry, transmission electron microscopy, and N2 sorption analyses-and tetracycline was degraded within 60 min in the presence of both magnetite and persulfate (K2S2O8), while the use of either substance yielded limited degradation efficiency. The effects of magnetite and persulfate dosage, the initial concentration of tetracycline, and the initial pH on the oxidative degradation of tetracycline were interrogated. The results demonstrate that the efficiency of tetracycline removal increased in line with magnetite and persulfate dosage. However, the reaction rate increased only when increasing the magnetite dosage, not the persulfate dosage. This finding indicates that magnetite serves as a catalyst in converting persulfate species into sulfate radicals. Acidic conditions were favorable for tetracycline degradation. Moreover, the effects of using a water matrix were investigated by using wastewater treatment plant effluent. Comparably lower removal efficiencies were obtained in the effluent than in ultrapure water, most likely due to competitive reactions among the organic and inorganic species in the effluent. Increased concentrations of persulfate also enhanced removal efficiency in the effluent. The tetracycline degradation pathway through the magnetite/persulfate system was identified by using a liquid chromatograph-tandem mass spectrometer. Overall, this study demonstrates that heterogeneous Fenton reactions when using a mixture of magnetite and persulfate have a high potential to control micropollutants in wastewater.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34589132

RESUMO

Naringin (NG), as the most abundant component of Drynariae Rhizoma (Chinese name: Gusuibu), has been proved to be an antioxidant flavonoid on promoting osteoporotic fracture (OF) healing, but relevant research is scanty on the underlying mechanisms. We adopted target prediction, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and molecular docking to establish a system pharmacology database of NG against OF. Totally 105 targets of naringin were obtained, including 26 common targets with OF. A total of 415 entries were obtained through GO Biological Process enrichment analysis (P < 0.05), and 37 entries were obtained through KEGG pathway enrichment analysis with seven signaling pathways included (P < 0.05), which were primarily concerned with p53, IL-17, TNF, estrogen, and PPAR signaling pathways. According to the results of molecular docking, naringin is all bound in the active pockets of the core targets with 3-9 hydrogen bonds through some connections such as hydrophobic interactions, Pi-Pi stacked interactions, and salt bridge, demonstrating that naringin binds tightly to the core targets. In general, naringin may treat OF through multiple targets and multiple pathways via regulating oxidative stress, etc. Notably, it is first reported that NG may regulate osteoclast differentiation and oxidative stress through the expression of the core targets so as to treat OF.

20.
Int Immunopharmacol ; : 107866, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34588155

RESUMO

Intervertebral disc degeneration (IVDD) is the main cause of low back pain. Notoginsenoside R1 (NR1) is widely applied in the treatment of bone disorders, including IVDD. The present study aimed to investigate the effects of NR1 on the development of IVDD and the potential mechanisms. AF puncture was performed to establish IVDD rat model. Histology changes were analyzed by hematoxylin and eosin (H&E) staining. mRNA expressions were determined using qRT-PCR. Protein expressions were detected with western blot. Cellular functions were detected by MTT, EdU, flow cytometry, and TUNEL assays. The results showed that NR1 suppressed AF puncture induced IVDD, restored intervertebral disc (IVD) function, and suppressed mechanical hyperalgesia and thermal hyperalgesia. Moreover, NR1 promoted the release of extracellular matrix (ECM) in vivo and in vitro, and decreased the mRNA expressions of proinflammation cytokines. Additionally, NR1 inactivated NF-κB/NLRP3 pathways, improved cellular functions of nucleus pulposus cells (NPCs), and suppressed cell pyroptosis, which was reversed by NLRP3 activation. Taken together, NR1 may protect against IVDD via suppressing NF-κB/NLRP3 pathways. This may provide a novel therapy for IVDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...