Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Nat Commun ; 13(1): 1055, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217665


Plasticity is ubiquitous and plays a critical role in material deformation and damage; it inherently involves the atomistic length scale and picosecond time scale. A fundamental understanding of the elastic-plastic deformation transition, in particular, incipient plasticity, has been a grand challenge in high-pressure and high-strain-rate environments, impeded largely by experimental limitations on spatial and temporal resolution. Here, we report femtosecond MeV electron diffraction measurements visualizing the three-dimensional (3D) response of single-crystal aluminum to the ultrafast laser-induced compression. We capture lattice transitioning from a purely elastic to a plastically relaxed state within 5 ps, after reaching an elastic limit of ~25 GPa. Our results allow the direct determination of dislocation nucleation and transport that constitute the underlying defect kinetics of incipient plasticity. Large-scale molecular dynamics simulations show good agreement with the experiment and provide an atomic-level description of the dislocation-mediated plasticity.

Proc Natl Acad Sci U S A ; 119(4)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074922


Under the irradiation of an ultrafast intense laser, solid materials can be driven into nonequilibrium states undergoing an ultrafast solid-liquid phase transition. Understanding such nonequilibrium states is essential for scientific research and industrial applications because they exist in various processes including laser fusion and laser machining yet challenging in the sense that high resolution and single-shot capability are required for the measurements. Herein, an ultrafast diffraction technique with megaelectron-volt (MeV) electrons is used to resolve the atomic pathway over the entire laser-induced ultrafast melting process, from the initial loss of long-range order and the formation of high-density liquid to the progressive evolution of short-range order and relaxation into the metastable low-density liquid state. High-resolution measurements using electron pulse compression and a time-stamping technique reveal a coherent breathing motion of polyhedral clusters in transient liquid aluminum during the ultrafast melting process, as indicated by the oscillation of the interatomic distance between the center atom and atoms in the nearest-neighbor shell. Furthermore, contraction of interatomic distance was observed in a superheated liquid state with temperatures up to 6,000 K. The results provide an atomic view of melting accompanied with internal pressure relaxation and are critical for understanding the structures and properties of matter under extreme conditions.