Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 523
Filtrar
1.
Carbohydr Polym ; 278: 118945, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973763

RESUMO

Super adsorbents exhibit great potential to remove pollutants from media or store considerable amounts of water, which may undermine the pressure triggered by environmental pollution and shortage of water resources. Super adsorbents made from biopolymers have been an attractive topic because of biodegradability, renewability and outstanding adsorption capacity. Hemicelluloses are a type of biopolymers very abundant in agricultural, forestry and pulping industrial wastes. Hemicellulose-based bio-adsorbents are thriving because the inherent chemical structures and physical properties of hemicelluloses make themselves easy to be processed into matrix materials applicable in super adsorbents. This review summarizes recent studies in hemicellulose-based bio-adsorbents, i.e. hydrogels and activated carbons, from the perspectives of types, applications, fabrication methods, the elements affecting the adsorption performance and the kinetics of adsorption process, which thus helps to further improve the properties of hemicellulose-based bio-adsorbents and to promote the industrial production and utilization of hemicelluloses and hemicellulose-based bio-adsorbents.

2.
Mol Med Rep ; 25(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34878152

RESUMO

Mitochondrial trifunctional protein (MTP) deficiency (MTPD; MIM 609015) is a metabolic disease of fatty acid oxidation. MTPD is an autosomal recessive disorder caused by mutations in the HADHA gene, encoding the α­subunit of a trifunctional protease, or in the HADHB gene, encoding the ß­subunit of a trifunctional protease. To the best of our knowledge, only two cases of families with MTPD due to HADHB gene mutations have been reported in China, and the HADHA gene mutation has not been reported in a Chinese family with MTPD. The present study reported the clinical characteristics and compound heterozygous HADHA gene mutations of two patients with MTPD in the Chinese population. The medical history, routine examination data, blood acyl­carnitine analysis results, results of pathological examination after autopsy and family pedigree map were collected for patients with MTPD. The HADHA gene was analyzed by Sanger sequencing or high­throughput sequencing, the pathogenicity of the newly discovered variant was interpreted by bioinformatics analysis, and the function of the mutated protein was modeled and analyzed according to 3D structure. The two patients with MTPD experienced metabolic crises and died following an infectious disease. Lactate dehydrogenase, creatine kinase (CK), CK­MB and liver enzyme abnormalities were observed in routine examinations. Tandem mass spectrometry revealed that long­chain acyl­carnitine was markedly elevated in blood samples from the patients with MTPD. The autopsy results for one child revealed fat accumulation in the liver and heart. Next­generation sequencing detected compound heterozygous c.703C>T (p.R235W) and c.2107G>A (p.G703R) mutations in the HADHA gene. The mother did not have acute fatty liver during pregnancy with the two patients. Using amniotic fluid prenatal diagnostic testing, the unborn child was confirmed to carry only c.2107G>A (p.G703R). Molecular mechanistic analysis indicated that the two variants affected the conformation of the α­subunit of the MTP enzyme complex, and consequently affected the stability and function of the enzyme complex. The present study comprehensively analyzed the cases, including exome sequencing and protein structure analysis and, to the best of our knowledge, describes the first observation of compound heterozygous mutations in the HADHA gene underlying this disorder in China. The clinical phenotypes of the two heterozygous variants of the HADHA gene are non­lethal. The present study may improve understanding of the HADHA gene mutation spectrum and clinical phenotype in the Chinese population.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34865737

RESUMO

The semiconductor-based photocatalysts with local surface plasmon resonance (LSPR) effect can extend light response to near-infrared region (NIR), as well as promote charge-carriers transfer, which provide a novel insight into designing light-driven photocatalyst with excellent photocatalytic performance. Here, we designed cost-effective wide-spectrum Zn2In2S5/W18O49 composite with enhanced photocatalytic performance based on a dual-channel charge transfer pathway. Benefiting from the synergistic effect of Z-scheme heterostructure and unique LSPR effect, the interfacial charge-carriers transfer rate and light-absorbing ability of Zn2In2S5/W18O49 were enhanced significantly under visible and NIR (vis-NIR) light irradiation. More reactive oxygen species (ROS) were formed by efficient molecular oxygen activation, which were the critical factors for both Escherichia coli (E. coli) photoinactivation and tetracycline (TC) photodegradation. The enhancement of molecular oxygen activation (MOA) ability was verified via quantitative analyses, which evaluated the amount of ROS through degrading nitrotetrazolium blue chloride (NBT) and p-phthalic acid (TA). By combining theoretical calculations with diverse experimental results, we proposed a credible photocatalytic reaction mechanism for antibiotic degradation and bacteria inactivation. This study develops a new insight into constructing promising photocatalysts with efficient photocatalytic activity in practical wastewater treatment.

4.
Trials ; 22(1): 878, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863272

RESUMO

BACKGROUND: There are more than 300,000 hip fractures yearly in the USA with mortality rates of 20% within 1 year. The treatment of osteoporotic fractures is a major challenge as bone quality is poor, and healing is expected to delay due to the impaired healing properties with respect to bone formation, angiogenesis, and mineralization. Enhancement of osteoporotic fracture healing and function is therefore critical as a major goal in modern fracture management. Previous pre-clinical studies have shown that low-magnitude high-frequency vibration (LMHFV) accelerates osteoporotic fracture healing. The objective of this study is to investigate the effect of LMHFV on accelerating trochanteric hip fracture healing and functional recovery. METHODS: This is a randomized, double-blinded, placebo-controlled clinical trial to evaluate the effect of LMHFV in accelerating trochanteric hip fracture healing. All fractures undergo cephalomedullary nail fixation. The primary outcome of this study is time to fracture healing by X-ray. Computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) will also be performed. Blood circulation at the fracture site will be assessed by dynamic perfusion magnetic resonance (MR). Clinical results include functional recovery by muscle strength, timed up and go test (TUG), quality of life questionnaire (SF-36), balancing, falls, and mortality. DISCUSSION: Previous animal studies have demonstrated LMHFV to improve both normal and osteoporotic fracture healing by accelerating callus formation and mineralization. The mechanical stimulation stimulates angiogenesis by significantly enhancing vascular volume and blood flow velocity. This is the first study to translate LMHFV to enhancing hip fracture healing clinically. Positive results would provide a huge impact in the recovery of hip fracture patients and save healthcare costs. TRIAL REGISTRATION: Clinicaltrials.gov NCT04063891. Registered on August 21, 2019.

5.
Adv Mater ; : e2108607, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34918409

RESUMO

Dysnatremia, a disorder in the concentration of sodium levels, possesses a clinical challenge leading to adverse health complications. Using biosensors for online sodium monitoring can be a promising approach to overcome this condition. In this regard, biosensors based on field-effect transistors (FETs) have promising advantages, including high sensitivity, quick response, and easy fabrication. Most of the currently developed FET designs are used only for sensing sweat and in-vitro blood/interstitial fluids (ISF). Using ISF for online detection of biomarkers and long-term health monitoring with FETs has not yet been fully resolved. Herein we propose an innovative stretchable skin-conformal fast-response microneedle extended-gate FET (MN-EGFET) biosensor for real-time detection of sodium in the ISF for minimally invasive health monitoring along with high sensitivity, low limit of detection, excellent biocompatibility, and on-body mechanical stability. This platform can, furthermore, be integrated with wireless-data transmitter and the Internet-of-Things (IoT) cloud for real-time monitoring and long-term analysis. This article is protected by copyright. All rights reserved.

6.
Chemosphere ; 292: 133403, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34968521

RESUMO

Micro- and nano-plastics are common emerging pollutants of great interest. However, the impacts of them on terrestrial plants were still poorly understood. In this study, comparative effects of exposure of polystyrene nanoplastics (PS) and amino-modified polystyrene nanoplastics (PS-NH2) on Chinese cabbage (Brassica rapa L.) plants at different growth stages were investigated. Hydroponically cultured seedlings were exposed to PS and PS-NH2 at 0, 1, 10, and 100 mg/L at skotomorphogenesis stage for 48 h, photomorphogenesis stage for 18 h, and the whole stage, respectively. Results showed that both PS and PS-NH2 had no discernible effect on radicle elongation at the skotomorphogenesis stage whereas significantly (P < 0.05) reduced photosynthetic pigment contents in varying degrees (18.06%-28.52%, 22.46%-36.86%) at the photomorphogenesis stage and the whole stage. Moreover, there was no significant difference between PS treatments and control except the 26.52% decline of chlorophyll a content at 1 mg/L at photomorphogenesis, while PS-NH2 significantly (P < 0.05) decreased photosynthetic pigment contents except the chlorophyll b content at 10 mg/L at photomorphogenesis. The content of chlorophyll a decreased by 26.68% for the PS-NH2-treated group and 22.46% for the PS-treated group at 1 mg/L during the whole stage. Results manifested that less negatively charged PS-NH2 seemed to show more severe phytotoxicity both at the photomorphogenesis stage and the whole stage. Notably, the surface charge of nano-plastics and the integrity of seedling establishment could be the main factors impacting the above difference. These findings are expected to improve our understanding of the effects of PSNPs on crop plants.

7.
Cell Mol Life Sci ; 79(1): 44, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971424

RESUMO

Triacylglycerol lipase (TGL) is an essential lipid metabolism enzyme that also plays a critical role in energy metabolism; however, how it regulates other life processes is unknown. To investigate the functional role of TGL in moth reproduction, males Sitotroga cerealella were used as a model. The TGL gene was cloned and analysed. The results showed that the open reading frame of TGL was 1968 bp long and contained three conserved regions. TGL gene expression was higher in the larval and early adult stages than in the pupal stage, with the highest levels observed in the fat body, testis and accessory glands during the early adult stage. Moreover, after TGL in male adults was silenced through RNAi, the protein content in male accessory glands remained unchanged, and the spermatophore transferred into females mated with TGL-silenced males became small and empty; meanwhile, the number of apyrene sperm in the spermatophore was significantly reduced due to the reduction of apyrene sperm in males, which eventually led to the significant reduction of egg-laying amount. All of the findings suggest that TGL regulates the amount of sperm in male moths as well as the morphology and quality of spermatophores transferred to females after mating with treated males, implying that TGL is critical for Sitotroga cerealella's reproductive process.

9.
Adv Mater ; : e2106842, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741350

RESUMO

Wound healing represents a major clinical and public healthcare problem that is frequently challenged by infection risks, detrimental consequences on the surrounding tissues, and difficulties to monitor the healing process. Here we report on a novel self-healing, antibacterial, and multifunctional wound dressing for sutureless wound closure and real-time monitoring of the healing parameters. The self-healing elastomer contains cetyltrimethylammonium bromide (CTAB) and has high mechanical toughness (35 MJ m-3 ), biocompatibility, and outstanding antibacterial activity (bactericidal rate is ≈90% in 12 h), enabling the wound dressing to effectively inhibit bacterial growth and accelerate infected wound healing. In vivo tests based on full-thickness skin incision model shows that the multifunctional wound dressing can help in contracting wound edges and facilitate wound closure and healing, as could be evidenced by notably dense and well-organized collagen deposition. The test provides an evidence that the integrated sensor array within the multifunctional wound dressing can monitor temperature, pH, and glucose level of the wound area in real-time, providing reliable and timely information of the condition of the wound. Ultimately, the reported multifunctional dressing would be of high value in managing the burden associated with wound healing via personalised monitoring and treatment approaches, digital and other people-centred solutions for health care.

10.
Front Cell Dev Biol ; 9: 742319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746136

RESUMO

Liver regeneration is characterized by cell cycle reentrance of hepatocytes. N-Myc, encoded by MYCN, is a member of the Myc family of transcription factors. Elevation of MYCN expression has been noted in the course of liver regeneration whereas the underlying mechanism remains unclear. Here we describe that up-regulation of MYCN expression, as measured by quantitative PCR, Western blotting, and immunohistochemical staining, paralleled liver regeneration in animal and cell models. MYCN expression was up-regulated as a result of transcriptional activation. Ingenuity pathway analysis (IPA) revealed several up-stream transcriptional regulators for MYCN and RNA interference validated E2F5 and TFDP1 as essential for hepatocyte growth factor (HGF)-induced MYCN trans-activation. Further examination showed that deficiency of BRG1, a chromatin remodeling protein, attenuated MYCN induction during liver regeneration. BRG1 interacted with and was recruited by E2F5/TFDP1 to the MYCN promoter. Mechanistically, BRG1 might play a role regulating histone H3 acetylation and H3K4 trimethylation and facilitating/stabilizing the binding of RNA polymerase II surrounding the MYCN promoter. Over-expression of ectopic MYCN in BRG1-null hepatocytes overcame deficiency of proliferation. Importantly, a positive correlation between MYCN expression and BRG1/E2F5/TFDP1 expression was observed in human liver specimens. In conclusion, our data identify a novel epigenetic pathway where an E2F5-TFDP1-BRG1 complex regulates MYCN transcription to promote liver regeneration.

11.
ACS Appl Mater Interfaces ; 13(46): 54762-54769, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34757708

RESUMO

Plasmid DNA transfection of mammalian cells is widely used in biomedical research and genetic drug delivery, but low transfection efficiency, especially in the context of the primary cells, limits its application. To improve the efficiency of plasmid transfection, a fully integrated self-powered electrical stimulation cell culture dish (SESD) has been developed to provide self-powered electrical stimulation (ES) of adherent cells, significantly improving the efficiency of plasmid transfection into mammalian cells and cell survival by the standard lipofectamine transfection method. Mechanistically, ES can safely increase the intracellular calcium concentration by opening calcium-ion channels, leading to a higher efficiency of plasmid transfection. Therefore, SESD has the potential to become an effective platform for high-efficiency plasmid DNA transfection in biomedical research and drug delivery.

12.
Autophagy ; : 1-19, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34720029

RESUMO

Lacking a self-contained metabolism network, viruses have evolved multiple mechanisms for rewiring the metabolic system of their host to hijack the host's metabolic resources for replication. Newcastle disease virus (NDV) is a paramyxovirus, as an oncolytic virus currently being developed for cancer treatment. However, how NDV alters cellular metabolism is still far from fully understood. In this study, we show that NDV infection reprograms cell metabolism by increasing glucose utilization in the glycolytic pathway. Mechanistically, NDV induces mitochondrial damage, elevated mitochondrial reactive oxygen species (mROS) and ETC dysfunction. Infection of cells depletes nucleotide triphosphate levels, resulting in elevated AMP:ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and MTOR crosstalk mediated autophagy. In a time-dependent manner, NDV shifts the balance of mitochondrial dynamics from fusion to fission. Subsequently, PINK1-PRKN-dependent mitophagy was activated, forming a ubiquitin chain with MFN2 (mitofusin 2), and molecular receptor SQSTM1/p62 recognized damaged mitochondria. We also found that NDV infection induces NAD+-dependent deacetylase SIRT3 loss via mitophagy to engender HIF1A stabilization, leading to the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Overall, these studies support a model that NDV modulates host cell metabolism through PINK1-PRKN-dependent mitophagy for degrading SIRT3.Abbreviations: AMPK: AMP-activated protein kinase; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECAR: extracellular acidification rate; hpi: hours post infection LC-MS: liquid chromatography-mass spectrometry; mito-QC: mCherry-GFP-FIS1[mt101-152]; MFN2: mitofusin 2; MMP: mitochondrial membrane potential; mROS: mitochondrial reactive oxygen species; MOI: multiplicity of infection; 2-NBDG: 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose; NDV: newcastle disease virus; OCR: oxygen consumption rate; siRNA: small interfering RNA; SIRT3: sirtuin 3; TCA: tricarboxylic acid; TCID50: tissue culture infective doses.

13.
Adv Colloid Interface Sci ; 297: 102540, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34634576

RESUMO

Photocatalysis is considered to be an effective way to remove organic pollutants, but the key to photocatalysis is finding a high-efficiency and stable photocatalyst. 2D materials-based heterojunction has aroused widespread concerns in photocatalysis because of its merits in more active sites, adjustable band gaps and shorter charge transfer distance. Among various 2D heterojunction systems, 2D/2D heterojunction with a face-to-face contact interface is regarded as a highly promising photocatalyst. Due to the strong coupling interface in 2D/2D heterojunction, the separation and migration of photoexcited electron-hole pairs are facilitated, which enhances the photocatalytic performance. Thus, the design of 2D/2D heterojunction can become a potential model for expanding the application of photocatalysis in the removal of organic pollutants. Herein, in this review, we first summarize the fundamental principles, classification, and strategies for elevating photocatalytic performance. Then, the synthesis and application of the 2D/2D heterojunction system for the removal of organic pollutants are discussed. Finally, the challenges and perspectives in 2D/2D heterojunction photocatalysts and their application for removing organic pollutants are presented.

14.
Chemosphere ; 288(Pt 2): 132516, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648785

RESUMO

Nanoplastics and carbon nanotubes (CNTs) is one of the emerging environmental contaminants and a widely used engineering nanomaterial, and their biological toxicity has been frequently studied. However, there has been no research on the combined exposure of these two totally different shape nanoparticles. To explore their potential threat to freshwater ecosystems, Microcystis aeruginosa (M. aeruginosa) was exposed to concentration gradients of polystyrene nanoplastics (Nano-PS) and multi-walled carbon nanotubes (MWCNTs). The physiological analysis and whole-transcriptome sequencing were integrated to certify the cytotoxicity. As the physiological results showed, the low concentration (5 mg/L) of these two nanoparticles showed a stimulation on the growth (6.49%-12.2%) and photosynthesis (0-7.6%), and the coexposure was slightly higher than individuals. However, other concentrations showed inhibitory effect, especially at high concentration (50 mg/L), and all physical signs and electron microscope images showed obvious cytotoxicity. Compared with the individuals, the coexposure showed an antagonistic effect induced by the heterogeneous agglomeration which decreased the surface toxicity and the contact with algae of nanomaterials. Transcriptome results showed that coexposure treatment had the fewest differential genes, and the primary effects embodied in the disturbances of cellular and metabolic processes which were superior to the individuals. In the 50 mg/L Nano-PS, the translation process was significantly disordered, and MWCNTs could disrupted the photosynthesis, multiple metabolism processes, membrane transport, and translation. These findings demonstrated the aquatic toxic mechanism from cellular and metabolic processes of Nano-PS and MWCNTs for M. aeruginosa and provided valuable data for environmental risk assessment of them.

15.
J Hum Genet ; 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34690349

RESUMO

To compare single-molecule real-time technology (SMRT) and conventional genetic diagnostic technology of rare types of thalassemia mutations, and to analyze the molecular characteristics and phenotypes of rare thalassemia gene variants, we used 434 cases with positive hematology screening as the cohort, then used SMRT technology and conventional gene diagnosis technology [(Gap-PCR, multiple ligation probe amplification technology (MLPA), PCR-reverse dot blot (RDB)] for thalassemia gene screening. Among the 434 enrolled cases, conventional technology identified 318 patients with variants (73.27%) and 116 patients without variants (26.73%), SMRT identified 361 patients with variants (83.18%), and 73 patients without variants (16.82%). The positive detection rate of SMRT was 9.91% higher than conventional technology. Combination of the two methods identified 485 positive alleles among 49 types of variant. The genotypes of 354 cases were concordant between the two methods, while 80 cases were discordant. Among the 80 cases, 76 cases had variants only identified in SMRT method, 3 cases had variants only identified in conventional method, and 1 false positive result by the traditional PCR detection technology. Except the three variants in HS40 and HBG1-HBG2 loci, which was beyond the design of SMRT method in this study, all the other discordant variants identified by SMRT were validated by further Sanger sequencing or MLPA. The hematological phenotypic parameters of 80 discordant cases were also analyzed. SMRT technology increased the positive detection rate of thalassemia genes, and detected rare thalassemia cases with variable phenotypes, which had great significance for clinical thalassemia gene screening.

16.
Front Microbiol ; 12: 604313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712206

RESUMO

Background: Triclosan (TCS) is a widely used antibacterial agent in personal care products and is ubiquitous in the environment. We aimed to examine whether TCS exposure affects microbiota in the gastrointestinal tract of zebrafish. Methods: After exposure to TCS 0 (Dimethyl Sulphoxide, DMSO control), 0.03, 0.3, 3, 30, 100, and 300ng/ml, respectively, from day 0 to 120days post fertilization (dpf), or for 7days in adult 4-month zebrafish, the long- and short-term impact of TCS exposure on the microbiome in the gastrointestinal tract was evaluated by analyzing 16S rRNA gene V3-V4 region sequencing. Results: The top two most dominant microbiota phyla were Proteobacteria and Fusobacteria phylum in all zebrafish groups. In TCS exposure 0-120 dpf, compared with DMSO control, the mean number of microbial operational taxonomic units (OTUs) was 54.46 lower (p<0.0001), Chao indice 41.40 lower (p=0.0004), and Ace indice 34.10 lower (p=0.0044) in TCS 300ng/ml group, but no change was observed in most of the other TCS concentrations. PCoA diagram showed that the microbial community in the long-term TCS 300ng/ml exposure group clustered differently from those in the DMSO control and other TCS exposure groups. A shorter body length of the zebrafish was observed in the long-term TCS exposure at 0.03, 100, and 300ng/ml. For 7-day short-term exposure in adult zebrafish, no difference was observed in alpha or beta diversity of microbiota nor the relative abundance of Proteobacteria or Fusobacteria phylum among DMSO control and any TCS levels, but a minor difference in microbial composition was observed for TCS exposure. Conclusions: Long-term exposure to high TCS concentration in a window from early embryonic life to early adulthood may reduce diversity and alter the composition of microbiota in the gastrointestinal tract. The effect of short-term TCS exposure was not observed on the diversity of microbiota but there was a minor change of microbial composition in adult zebrafish with TCS exposure.

17.
Adv Sci (Weinh) ; : e2103005, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34708571

RESUMO

The neuronal engagement of the peripheral nerve system plays a crucial role in regulating fracture healing, but how to modulate the neuronal activity to enhance fracture healing remains unexploited. Here it is shown that electrical stimulation (ES) directly promotes the biosynthesis and release of calcitonin gene-related peptide (CGRP) by activating Ca2+ /CaMKII/CREB signaling pathway and action potential, respectively. To accelerate rat femoral osteoporotic fracture healing which presents with decline of CGRP, soft electrodes are engineered and they are implanted at L3 and L4 dorsal root ganglions (DRGs). ES delivered at DRGs for the first two weeks after fracture increases CGRP expression in both DRGs and fracture callus. It is also identified that CGRP is indispensable for type-H vessel formation, a biological event coupling angiogenesis and osteogenesis, contributing to ES-enhanced osteoporotic fracture healing. This proof-of-concept study shows for the first time that ES at lumbar DRGs can effectively promote femoral fracture healing, offering an innovative strategy using bioelectronic device to enhance bone regeneration.

18.
Nanomicro Lett ; 13(1): 188, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482476

RESUMO

A good method of synthesizing Ti3C2Tx (MXene) is critical for ensuring its success in practical applications, e.g., electromagnetic interference shielding, electrochemical energy storage, catalysis, sensors, and biomedicine. The main concerns focus on the moderation of the approach, yield, and product quality. Herein, a modified approach, organic solvent-assisted intercalation and collection, was developed to prepare Ti3C2Tx flakes. The new approach simultaneously solves all the concerns, featuring a low requirement for facility (centrifugation speed < 4000 rpm in whole process), gram-level preparation with remarkable yield (46.3%), a good electrical conductivity (8672 S cm-1), an outstanding capacitive performance (352 F g-1), and easy control over the dimension of Ti3C2Tx flakes (0.47-4.60 µm2). This approach not only gives a superb example for the synthesis of other MXene materials in laboratory, but sheds new light for the future mass production of Ti3C2Tx MXene.

19.
Eur J Histochem ; 65(3)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468107

RESUMO

In this study, we studied the long-term proliferation trajectory of myeloid-derived suppressor cells (MDSCs) in murine sepsis model and investigated whether swertianolin could modulate the immunosuppressive function of MDSCs. A murine sepsis model was established by cecal ligation and perforation (CLP), according to the Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS) guidelines. The bone marrow and spleen of the mice were collected at 24 h, 72 h, 7 and 15 d after sepsis induction. The proportions of monocytic-MDSCs (M-MDSCs; CD11b+LY6G-LY6Chi) and granulocytic-MDSCs (G-MDSC, CD11b+ Ly6G+ Ly6Clow) were analyzed by flow cytometry. Then, we have investigated whether swertianolin could modulate the immunosuppressive function of MDSCs in in vitro experiments. G-MDSCs and M-MDSCs increased acutely after sepsis with high levels sustained over a long period of time. G-MDSCs were the main subtype identified in the murine model of sepsis with polymicrobial peritonitis. Furthermore, it was found that swertianolin reduced significantly interleukin-10 (IL-10), nitric oxide (NO), reactive oxygen species (ROS), and arginase production in MDSCs, while reducing MDSC proliferation and promoting MDSC differentiation into dendritic cells. Swertianolin also improved T-cell activity by blocking the immunosuppressive effect of MDSCs. Both subsets of MDSCs significantly increased in the bone marrow and spleen of the mice with sepsis, with G-MDSCs being the main subtype identified. Swertianolin effectively regulated the functions of MDSCs and reduced immune suppression.

20.
J Vet Med Sci ; 83(10): 1608-1619, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34470981

RESUMO

A novel avian infectious bronchitis virus (IBV) variant, designated as GX-NN160421, was isolated from vaccinated chicken in Guangxi, China, in 2016. Based on analysis of the S1 gene sequence, GX-NN160421 belonged to the New-type 1 (GVI-1) strain. More importantly, three consecutive nucleotides (AAC) deletions were found in the highly conserved structure gene N. The serotype of GX-NN160421 was different from those of the commonly used vaccine strains. The mortality of the GX-NN160421 strain was 3.33%, which contrasted with 50% mortality in the clinical case, but high levels of virus shedding lasted at least 21 days. In conclusion, the first novel IBV variant with three-nucleotide-deletion in the N gene was identified, and this unique variant is low virulent but with a long time of virus shedding, indicating the continuing evolution of IBV and emphasizing the importance of limiting exposure to novel IBV strains as well as extensive monitoring of new IBVs.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Genótipo , Vírus da Bronquite Infecciosa/genética , Nucleocapsídeo , Nucleotídeos , Filogenia , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...