Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32134805

RESUMO

BACKGROUND: The method of evaluating office blood pressure (OBP) varies greatly among different guidelines. OBJECTIVES: We performed a cohort study to compare the association of various directly transferred attended automated OBP (AOBP) estimations with all-cause and cardiovascular mortalities. METHODS: Overall, 475 181 sets of OBPs from 35 622 participants aged 35 years or older were extracted from the electronic health record of the Xinzhuang town hospital in the Minhang District, Shanghai, China. Each set of OBPs contained three consecutive AOBPs that were transferred directly to the electronic health record. The mean of three OBPs, mean of the last two OBPs, and alternative average OBP were calculated. RESULTS: The difference between the first and average OBPs changed along with the calendar month, and it was highest in December (5.3/2.1 mmHg) and lowest in July (3.8/2.0 mmHg). The subjects older than 80 years of age displayed the largest discrepancy in the blood pressure control rate according to the first OBP or average OBP (12.1%). During the 3.9-year follow-up, 1055 deaths occurred. The alternative average SBP was associated with both all-cause [hazard ratio: 1.07, 95% confidence interval (CI): 1.04-1.11] and cardiovascular (hazard ratio: 1.17, 95% CI: 1.11-1.23) mortalities. The uncontrolled alternative average OBP remained significantly associated with an increasing risk of all-cause (hazard ratio: 1.24, 95% CI: 1.09-1.40) and cardiovascular (hazard ratio: 1.53, 95% CI: 1.25-1.86) mortality, but not the average of the last two or mean of three readings. CONCLUSION: We observed an obvious discrepancy in the OBP level and OBP control rate according to different AOBP estimations. The alternative average OBP seemed to be more powerful in predicting both all-cause and cardiovascular mortalities than the average of the last two or mean of three readings.

2.
Expert Opin Ther Targets ; 24(3): 267-279, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32077781

RESUMO

Objectives: 10-hydroxydec-2-enoic acid (10-HDA), a unique component of royal jelly existing only in nature, has the potential to promote human health. Knowledge of 10-HDA in regulating immuno-activity, however, is lacking. The aim of our work is to gain a novel understanding of 10-HDA in promoting immunity.Methods: Immuno-suppressed mice were generated by cyclophosphamide injection, After 10-HDA supplementation to the mice to rescue their immunity, the proteomes of the thymus and spleen were analyzed.Results: The weight of the body, thymus, and spleen in cyclophosphamide-induced mice recovered by 10-HDA indicate its potential role in immuno-organ protection. In the thymus, the enhanced activity of pathways associated with DNA/RNA/protein activities may be critical for T-lymphocyte proliferation/differentiation, and cytotoxicity. In the spleen, the induced pathways involved in DNA/RNA/protein activities, and cell proliferative stimulation suggest their vital role in B-lymphocyte affinity maturation, antigen presentation, and macrophage activity. The up-regulated proteins highly connected in networks modulated by 10-HDA indicate that the mice may evolve tactics to respond to immuno-organ impairment by activating critical physiological processes.Conclusion: Our data constitute a proof-of-concept that 10-HDA is a potential agent to improve immunity in the thymus and spleen and offer a new venue for applying natural products to the therapy for hypoimmunity.

3.
Phys Chem Chem Phys ; 22(4): 1974-1982, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932822

RESUMO

Vacuum ultraviolet (VUV) photoionization and dissociative photoionization of NO2 in the 10.0-15.5 eV energy range have been investigated in detail by using high-resolution double imaging photoelectron photoion coincidence (i2PEPICO) at synchrotron SOLEIL. Five low-lying electronic states of the NO2+ cation, X1Σg+, a3B2, b3A2, A1A2 and B1B2, are prepared with well-resolved vibronic structures and their state-specific dissociation mechanisms are unraveled and discussed. The present experimental results clarify that except the X1Σg+ ground electronic state and the first three vibrational levels of the a3B2 electronic state, the other cationic states of NO2+ within the present energy range are totally dissociative towards the NO+(X1Σ+) + O(3P) and/or NO+(X1Σ+) + O(1D) dissociation limits. An energy barrier exists along the direct dissociation route of the a3B2 state, and the b3A2 electronic state is a quasi-bound state with a very shallow well, both of which adiabatically correlate to the NO+(X1Σ+) + O(3P) dissociation limit. The a3B2 state mainly with bending vibration excitations undergoes a non-adiabatic transition to the 23A''(3B1) repulsive state along its bending potential energy curve and then predissociates into the NO+(X1Σ+) + O(3P) products. Our experimental results firstly demonstrate that the NO+(X1Σ+, v) fragment ions produced from individual vibronic levels of the dissociative NO2+(a3B2, b3A2) states are produced at the v = 0 ground vibrational level with a high rotational population due to the excitation of the vibrational bending mode of NO2+ and the associated imparted torque upon dissociation. The slower predissociations of the A1A2 and B1B2 electronic states via their spin-orbit couplings with the repulsive 23A''(3B1) state produce the NO+(X1Σ+) and O(3P) fragments with a long vibrational progression. In addition, the B1B2 state can also undergo a radiationless transition such as internal conversion into the hot X1Σg+ state and then dissociate into the second dissociation channel correlated to the NO+(X1Σ+) and O(1D) products.

4.
Nanoscale ; 12(4): 2732-2739, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31951244

RESUMO

Graphene quantum dots (GQDs) have shown promising potential applications in the field of biomedicine. To date, understanding the GQD-cell membrane interactions remains a key issue in developing their biomedical applications, such as targeted drug delivery and bio-imaging. In this study, we mainly shed light on the mechanism of how to control the interactions between GQDs and membranes by tuning the electrostatic potential (EP) of GQDs. Charge distributions at the edge sites were adjusted to mimic the modified EP of GQDs, given that the physicochemical properties of GQDs are usually regulated and determined by the grafted groups and doped atoms at edges. We found that the dynamics of GQDs in the GQD-membrane system can be regulated effectively by modulating the EP of GQDs, which is not only determined by the direct GQD-cell interactions but also by the GQD-water interactions. GQDs with non- or less-polarized EP are hydrophobic, and they can easily translocate into the inner membrane from the bulk water because of the decreased GQD-POPC van der Waals interactions and the favorable dehydration process. In the case of a GQD with more polarized EP, the nanomaterial prefers to adsorb onto the membrane surface due to the strong electrostatic attraction between the GQD and lipid headgroups, and especially, the high dehydration free energy of GQDs can even lead to transient detachment from the surface. These findings would be helpful to understand the interactions between GQD-based nanomaterials and cell membranes, facilitating the rational design of GQD-related biomedicines.

5.
Analyst ; 145(4): 1355-1361, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31970369

RESUMO

Sensitive detection of low-abundance point mutations in blood or tissue may provide a great opportunity for the minimally invasive diagnosis of cancer and other related diseases. We demonstrate a novel method for ultra-sensitive detection of point mutations at low abundance by combination of branch migration-based PCR with endonuclease IV-assisted target recycling probe/blocker system. The method is able to identify the point mutations at abundances down to 0.01-0.02%. We anticipate this method to be widely adopted in clinical diagnosis and molecular research.

6.
Ann Transl Med ; 7(20): 528, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31807510

RESUMO

Background: The major causes of morbidity and mortality of patients with chronic liver disease are liver fibrosis and cirrhosis. Previous studies have been concerned with immune dysfunction in the pathogenesis of cirrhosis progress. However, the potential molecular mechanism of how the liver's fibrotic state favors tumor progression is still unclear. We attempted to reveal deviations of the immune cell landscape between various liver tissues and identify key biomarkers associated with patients' outcomes. Method: CIBERSORT was used for estimating the proportions of immune cells in various liver tissues. Comparative studies were carried out by Kruskal-Wallis test and Wilcoxon test. For survival analyses, the Cox proportional hazard regression model, Kaplan-Meier estimates, and log-rank test were used. Results: Significantly different adaptive and innate immune cell types were selected, including T cells, plasma cells, and resting mast cells. Meanwhile, the immune cell landscapes in The Cancer Genome Atlas' (TCGA) hepatocellular carcinoma (HCC) patients with different degrees of fibrosis were also calculated. Comparative studies and survival analysis were carried out. Resting mast cell and activated NK cells in HCC patients with fibrosis was significantly lower than that in other HCC patients without fibrosis. Then, the potential genes involved in immune cells and significantly associated with patients' outcome were identified. These genes may be potential novel checkpoints for immunotherapy, including PVRIG related to NK resting/activated cells and T cell CD8+ infiltration which was recently targeted in breast cancer. Furthermore, Pearson correlation coefficient analysis suggested that PVRIG is significantly positively related to other checkpoint molecules and Teff gene signatures. Conclusions: Alternative treatments, including immunotherapies, are necessary and urgent for HCC. Although checkpoint inhibitors that block CTLA-4 and PD-1 have improved cancer immunotherapies, targeting additional checkpoint receptors may be required to broaden patient response to immunotherapy. Our studies may find possible ways to select novel targets and improve immunotherapy efficacy by disrupting their function and promoting immune infiltration in advanced HCC patients with higher fibrosis and even cirrhosis.

7.
ACS Appl Mater Interfaces ; 11(42): 39018-39025, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31576735

RESUMO

Controllably manipulating the spectral response of broadband-absorbing semiconductors is crucial for developing wavelength-selective optoelectronic devices. In this article, we report for the first time, the bias-dependent spectral responses for a metal-halide perovskite photodiode. Tunable external quantum efficiencies in the short- and long-wavelength regimes, and the full spectral range (ca. 300-800 nm) are observed when the device is operated under short-circuit, and forward and reverse bias conditions, respectively. This observation is understood by the interplay of wavelength-dependent penetration depth and barrier formation within the photodiode device stack. The general applicability of this concept is confirmed by a systematic study on a series of mixed-halide perovskite devices. These results suggest that the proposed concept allows as a promising platform and should inspire further exploration of multispectral responsive optoelectronic devices.

8.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296681

RESUMO

Thermoactinomyces vulgaris strain CDF was isolated from soil and shown to have the ability to degrade chicken feathers at high temperatures. Here, we report the complete genome sequence of this bacterium, which is 2,595,509 bp long with 2,642 predicted genes and an average G+C content of 48.14%.

9.
J Hum Hypertens ; 33(9): 693-700, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089199

RESUMO

The 2016 guideline on the work-up of primary aldosteronism recommended that patients with obstructive sleep apnea-hypopnea syndrome (OSAS) be screened. This study aimed to identify the clinical characteristics of snoring patients with primary aldosteronism (PA) complicated by OSAS. Sixty-eight self-reported or witnessed snoring patients and 609 non-snoring patients diagnosed with PA between 2010 and 2015 were recruited in this retrospective study. Compared to non-snoring patients, snoring patients had significantly (P < 0.05) higher body mass index (BMI), diastolic blood pressure (DBP), and serum and urinary sodium, as well as lower estimated glomerular filtration rate (eGFR). Moreover, snoring patients exhibited significantly (P < 0.01) higher plasma renin activity levels and lower plasma aldosterone levels and aldosterone-to-renin activity ratios (ARRs) than patients with PA alone. When age, sex, duration of hypertension, and BMI were matched between groups, snoring patients still showed significantly (P < 0.05) higher plasma renin activity, serum and urinary sodium, and lower ARR and eGFR than those in the PA-only group. All 68 snoring patients underwent polysomnography, with 7 having mild (apnea-hypopnea index (AHI) ≥ 5 and <15), 21 moderate (AHI ≥ 15 and <30), and 40 severe (AHI ≥ 30) OSAS. The BMI of patients with OSAS was negatively correlated with the lowest SaO2 (r = -0.318, P = 0.018) but not with the AHI. In conclusion, snoring patients with PA tend to have increased BMI and DBP, as well as decreased eGFR and ARR. Snoring patients with PA had higher prevalence of moderate-to-severe OSAS.

10.
Gigascience ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942870

RESUMO

BACKGROUND: Kiwifruit (Actinidia spp.) is a dioecious plant with fruits containing abundant vitamin C and minerals. A handful of kiwifruit species have been domesticated, among which Actinidiaeriantha is increasingly favored in breeding owing to its superior commercial traits. Recently, elite cultivars from A. eriantha have been successfully selected and further studies on their biology and breeding potential require genomic information, which is currently unavailable. FINDINGS: We assembled a chromosome-scale genome sequence of A. eriantha cultivar White using single-molecular sequencing and chromatin interaction map-based scaffolding. The assembly has a total size of 690.6 megabases and an N50 of 21.7 megabases. Approximately 99% of the assembly were in 29 pseudomolecules corresponding to the 29 kiwifruit chromosomes. Forty-three percent of the A. eriantha genome are repetitive sequences, and the non-repetitive part encodes 42,988 protein-coding genes, of which 39,075 have homologues from other plant species or protein domains. The divergence time between A. eriantha and its close relative Actinidia chinensis is estimated to be 3.3 million years, and after diversification, 1,727 and 1,506 gene families are expanded and contracted in A. eriantha, respectively. CONCLUSIONS: We provide a high-quality reference genome for kiwifruit A. eriantha. This chromosome-scale genome assembly is substantially better than 2 published kiwifruit assemblies from A. chinensis in terms of genome contiguity and completeness. The availability of the A. eriantha genome provides a valuable resource for facilitating kiwifruit breeding and studies of kiwifruit biology.


Assuntos
Actinidia/genética , Cromatina/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Frutas/genética , Genoma de Planta , Genômica , Actinidia/classificação , Evolução Molecular , Perfilação da Expressão Gênica , Genômica/métodos , Genótipo , Fenótipo , Filogenia , Transcriptoma
11.
Adv Mater ; 31(23): e1901152, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972830

RESUMO

A synergic interface design is demonstrated for photostable inorganic mixed-halide perovskite solar cells (PVSCs) by applying an amino-functionalized polymer (PN4N) as cathode interlayer and a dopant-free hole-transporting polymer poly[5,5'-bis(2-butyloctyl)-(2,2'-bithiophene)-4,4'-dicarboxylate-alt-5,5'-2,2'-bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2 , while PDCBT with deeper-lying highest occupied molecular orbital (HOMO) level provides a better energy-level matching at the anode, leading to a significant enhancement in open-circuit voltage (Voc ) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high-quality all-inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2 Br films. Therefore, the optimized CsPbI2 Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all-inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2 Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.

12.
Exp Physiol ; 104(6): 946-956, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30924217

RESUMO

NEW FINDINGS: What is the central question of this study? Is the membrane raft redox signalling pathway involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an angiotensin II-induced hypertensive animal model? What is the main finding and its importance? The membrane raft redox signalling pathway was involved in endothelial dysfunction and medial remodelling in angiotensin II-induced hypertension. ABSTRACT: The membrane raft (MR) redox pathway is characterized by NADPH oxidase activation via the clustering of its subunits through lysosome fusion and the activation of acid sphingomyelinase (ASMase). Our previous study shows that the MR redox signalling pathway is associated with angiontensin II (AngII)-induced production of reactive oxygen species (ROS) and endothelial dysfunction in rat mesenteric arteries. In the present study, we hypothesized that this signalling pathway is involved in blood pressure increase, endothelial dysfunction and vascular remodelling in an AngII-induced hypertensive animal model. Sixteen-week-old male Sprague-Dawley rats were subjected to AngII infusion for 2 weeks with or without treatment with the lysosome fusion inhibitor bafilomycin A1 and ASMase inhibitor amitriptyline. After treatments, aortas were harvested for further study. The results showed that the MR redox signalling pathway was activated as indicated by the increase of MR formation, ASMase activity and ROS production in aorta from AngII-infused rats compared with that from control rats. MR formation and ROS production were significantly inhibited in thoracic aorta from AngII-induced rats treated with bafilomycin A1 and amitriptyline. Both treatments significantly attenuated blood pressure increase, endothelial dysfunction and vascular remodelling including medial hypertrophy, and increased collagen and fibronectin deposition in thoracic aortas from AngII-infused rats. Finally, both treatments significantly prevented the increase of inflammatory factors including monocyte chemotactic protein 1, intercellular adhesion molecule 1 and tumour necrosis factor α in thoracic aorta from AngII-infused rats. In conclusion, the present study demonstrates that the MR redox signalling pathway was involved in endothelial dysfunction and medial remodelling in AngII-induced hypertension.

13.
Adv Mater ; 31(8): e1806516, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30633825

RESUMO

Mesoscale-structured materials offer broad opportunities in extremely diverse applications owing to their high surface areas, tunable surface energy, and large pore volume. These benefits may improve the performance of materials in terms of carrier density, charge transport, and stability. Although metal oxides-based mesoscale-structured materials, such as TiO2 , predominantly hold the record efficiency in perovskite solar cells, high temperatures (above 400 °C) and limited materials choices still challenge the community. A novel route to fabricate organic-based mesoscale-structured interfaces (OMI) for perovskite solar cells using a low-temperature and green solvent-based process is presented here. The efficient infiltration of organic porous structures based on crystalline nanoparticles allows engineering efficient "n-i-p" and "p-i-n" perovskite solar cells with enhanced thermal stability, good performance, and excellent lateral homogeneity. The results show that this method is universal for multiple organic electronic materials, which opens the door to transform a wide variety of organic-based semiconductors into scalable n- or p-type porous interfaces for diverse advanced applications.

14.
Oncol Rep ; 41(2): 1231-1237, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535501

RESUMO

Hepatocellular carcinoma (HCC) is a globally prevalent malignancy associated with a poor patient prognosis. We investigated the relationship between microRNA­223 (miR­223) expression and the sensitivity of HCC cells to sorafenib treatment. miR­223 expression was determined in HCC cell lines with differential sorafenib sensitivity using reverse transcription­quantitative PCR. miR­223 inhibitor, miR­223 mimic, and F­box and WD repeat domain­containing 7 (FBW7) short interfering RNAs (siRNAs) were transfected into the HCC cells to regulate the expression levels of miR­223 and FBW7. Cell proliferation was evaluated using an ethynyl deoxyuridine (EdU) incorporation assay and Cell Counting Kit­8. FBW7 protein expression levels were observed using western blotting. miR­223 expression was increased in the HCC cells with sorafenib resistance. HCC cells with miR­223 knockdown had significantly increased sorafenib sensitivity, but the miR­223 mimic had the opposite effect. The TargetScan web server predicted that FBW7 is a target of miR­223, which was confirmed by western blotting. Furthermore, FBW7 siRNA transfection increased HCC cell resistance to sorafenib in an obvious manner, and entirely eliminated the effect of the miR­223 inhibitor on enhancing sorafenib sensitivity. To conclude, miR­223 expression is upregulated in sorafenib­resistant HCC cells, and miR­223 knockdown significantly enhances HCC cell sensitivity to sorafenib by increasing expression of the target gene, FBW7, suggesting that miR­223 may be a new therapeutic target for overcoming sorafenib resistance.

15.
Clin Exp Hypertens ; 41(4): 323-329, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29902063

RESUMO

BACKGROUND AND AIMS: Genetic factors play an important role in the cervico-cerebral large-artery atherosclerotic stenosis (LAS), and ATP2B1 gene has been associated with the process of atherosclerosis disorders, such as coronary artery disease and arterial stiffness. But there is little information about the relationship between ATP2B1 gene and atherosclerosis in the intracranial arteries. We hereby investigated the association of common variants in ATP2B1 gene with LAS in asymptomatic Chinese hypertension patients. METHODS: The stenosis of intracranial and extracranial arteries were evaluated in 899 subjects through computerized tomography angiography from the aortic arch to the skull base. A total of 11 ATP2B1 common variants were genotyped. Multivariate logistic regression was carried out in a dominant model with confounding factors adjusted. RESULTS: rs17249754-A (OR = 0.43, p = 0.0002) and rs1401982-G (OR = 0.47, p = 0.0007) were associated with decreased susceptibility of concurrent extra and intracranial stenosis even after Bonferroni correction. These two minor alleles were also significantly associated with less stenotic arteries and moderate-to-severe stenosis. CONCLUSION: rs17249754 and rs1401982 were associated with asymptomatic LAS in stroke-free Chinese hypertension patients and might benefit early recognition of LAS patients in clinical practice.


Assuntos
Artérias/diagnóstico por imagem , Aterosclerose/genética , Hipertensão/complicações , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Idoso , Artérias/patologia , Doenças Assintomáticas , Aterosclerose/complicações , Aterosclerose/diagnóstico por imagem , Artéria Basilar/diagnóstico por imagem , Artéria Basilar/patologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/patologia , Angiografia por Tomografia Computadorizada , Constrição Patológica/diagnóstico por imagem , Constrição Patológica/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Subclávia/diagnóstico por imagem , Artéria Subclávia/patologia , Rigidez Vascular/genética , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/patologia
16.
Front Physiol ; 9: 1581, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524295

RESUMO

It has been demonstrated that serum/glucocorticoid regulated kinase 1 (SGK1) and the downstream transcription factor forkhead box O1 (FoxO1) plays a critical role in the differentiation of T helper 17 cells/regulatory T cells (Th17/Treg). In the present study, we hypothesized that this SGK1-FoxO1 signaling pathway is involved in Th17/Treg imbalance and target organ damage in angiotensin II (AngII)-induced hypertensive mice. Results show that SGK1 inhibitor EMD638683 significantly reversed renal dysfunction and cardiac dysfunction in echocardiography as indicated by decreased blood urine nitrogen and serum creatinine in AngII-infused mice. Flow cytometric assay shows that there was significant Th17/Treg imbalance in spleen and in renal/cardiac infiltrating lymphocytes as indicated by the increased Th17 cells (CD4+-IL17A+ cells) and decreased Treg cells (CD4+-Foxp3+). Consistently, real-time PCR shows that Th17-related cytokines including IL-17A, IL-23, and tumor necrosis factor α (TNF-α) was increased and Treg-related cytokine IL-10 was decreased in renal and cardiac infiltrating lymphocytes in AngII-infused mice. Meanwhile, SGK1 protein level, as well as its phosphorylation and activity, was significantly increased in spleen in AngII-infused rats. Furthermore, it was found that splenic phosphorylated FoxO1 was significantly increased, whereas total FoxO1 in nuclear preparation was significantly decreased in AngII-infused mice, suggesting that increased FoxO1 phosphorylation initiate its translocation from cytoplasm to nucleus. Notably, all changes were significantly inhibited by the treatment of EMD638683. These results suggest that SGK1 was involved in Th17/Treg imbalance and target organ damage in AngII-induced hypertension.

17.
Nat Commun ; 9(1): 5335, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559396

RESUMO

There is a strong market driven need for processing organic photovoltaics from eco-friendly solvents. Water-dispersed organic semiconducting nanoparticles (NPs) satisfy these premises convincingly. However, the necessity of surfactants, which are inevitable for stabilizing NPs, is a major obstacle towards realizing competitive power conversion efficiencies for water-processed devices. Here, we report on a concept for minimizing the adverse impact of surfactants on solar cell performance. A poloxamer facilitates the purification of organic semiconducting NPs through stripping excess surfactants from aqueous dispersion. The use of surfactant-stripped NPs based on poly(3-hexylthiophene) / non-fullerene acceptor leads to a device efficiency and stability comparable to the one from devices processed by halogenated solvents. A record efficiency of 7.5% is achieved for NP devices based on a low-band gap polymer system. This elegant approach opens an avenue that future organic photovoltaics processing may be indeed based on non-toxic water-based nanoparticle inks.

18.
ACS Appl Mater Interfaces ; 10(42): 36398-36406, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30264555

RESUMO

Dielectric mirrors based on bilayers of polystyrene- block-poly(ethylene- ran-butylene)- block-polystyrene (SEBS) and poly(vinyl alcohol) (PVA)-zirconium dioxide (ZrO2) nanocomposites are fabricated for vapor sensing. When exposed to specific solvent vapor, the layers of dielectric mirrors can gradually swell and cause a red-shift of the reflection band. Because PVA solely responds to water and SEBS is sensitive to several different types of organic solvents, the mirrors can respond to a large variety of solvents. The dual-functional hydrophilic ZrO2 nanoparticles are introduced to not only enlarge the refractive index contrast but also increase the permeability. Time-resolved measurements show that mirrors with nanoparticles have a significantly faster response than those without nanoparticles. Moreover, the dependence on relative humidity is studied for representative solvents, and several types of solvents are selected to show the dependence on the solvent-polymer interaction parameters at typical relative humidity, which allows one to predict the responsivity and selectivity of the sensors.

19.
Cancer Cell Int ; 18: 141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250399

RESUMO

Background: Long non-coding RNA (lncRNA) SNHG5 has been found to play an important role in tumors. Nevertheless, the function and mechanism of lncRNA SNHG5 in osteosarcoma (OS) remains unclear. The purpose of this study was to investigate whether lncRNA SNHG5 can regulate the occurrence and development of OS cells. Methods: We performed quantitative real time PCR to detect the expression of lncRNA SNHG5 in OS cells. 143B, MG63 (knockdown) and U2OS, U2R (overexpression) cell lines were chosen for the function study of SNHG5. The effect of SNHG5, miR-212-3p, and SGK3 in OS cells was explored by MTT assays, clony formation, flow cytometry, transwell assays, wound healing assays, and cell spreading assays. Quantitative real-time PCR, Western blot analysis and luciferase assays were used to detect the interaction between lncRNA SNHG5 and miR-212-3p. Results: In this study, knockdown of lncRNA SNHG5 suppressed the growth and metastasis of OS cells, whereas the overexpression of SNHG5 produced an opposite result. Mechanistically, lncRNA SNHG5 functions as a sponger against miR-212-3p and suppresses the miR-212-3p/SGK3 signaling pathway. Introduction of miR-212-3p mimics or inhibitors reverses SNHG5 overexpression or silences the exerted tumor promoting or suppressing effect. In addition, our results showed that the function of SNHG5 can be rescued by miR-212-3p and can regulate the growth and metastasis of OS cells via SGK3, the downstream target of miR-212-3p. Conclusions: In summary, our study demonstrated that lncRNA SNHG5 can regulate the proliferation and metastasis of OS cells through the miR-212-3p/SGK3 axis. This axis may provide a new target for future clinical treatment.

20.
Sci Rep ; 8(1): 13414, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194355

RESUMO

Chrysanthemum morifolium is an ornamentally and medicinally important plant species. Up to date, molecular and genetic investigations have largely focused on determination of flowering time in the ornamental species. However, little is known about gene regulatory networks for the biosynthesis of flavonoids in the medicinal species. In the current study, we employed the high-throughput sequencing technology to profile the genome-wide transcriptome of C. morifolium 'Chuju', a famous medicinal species in traditional Chinese medicine. A total of 63,854 unigenes with an average length of 741 bp were obtained. Bioinformatic analysis has identified a great number of structural and regulatory unigenes potentially participating in the flavonoid biosynthetic pathway. According to the comparison of digital gene expression, 8,370 (3,026 up-regulated and 5,344 down-regulated), 1,348 (717 up-regulated and 631 down-regulated) and 944 (206 up-regulated and 738 down-regulated) differentially expressed unigenes (DEUs) were detected in the early, middle and mature growth phases, respectively. Among them, many DEUs were implicated in controlling the biosynthesis and composition of flavonoids from the budding to full blooming stages during flower development. Furthermore, the expression patterns of 12 unigenes involved in flavonoid biosynthesis were generally validated by using quantitative real time PCR. These findings could shed light on the molecular basis of flavonoid biosynthesis in C. morifolium 'Chuju' and provide a genetic resource for breeding varieties with improved nutritional quality.


Assuntos
Chrysanthemum/genética , Flavonoides/biossíntese , Flores/crescimento & desenvolvimento , Transcriptoma , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Flavonoides/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA