Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Hepatol ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36669703

RESUMO

BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR (qPCR) and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSC, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance (SPR), bioluminescence resonance energy transfer (BRET), and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly down-regulated in patients and mouse models with liver fibrosis, showing a negative correlation with F stage and α-smooth muscle actin (α-SMA) expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic liver in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSC leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding with its N-terminal ankyrin repeat domain (ARD) to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSC from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression acts antifibrotic in various disease models. CONCLUSION: Antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, promisingly providing an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as gatekeeper of quiescence in HSC, one driver cell of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic reexpression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.

2.
J Ethnopharmacol ; 305: 116065, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36587876

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Neuropathic pain can be debilitating and drastically affects the quality of life of those patients suffering from this condition. The Chinese herb Notopterygium incisum Ting ex H.T. Chang has long been used to disperse "cold". One under examined clinical feature of neuropathic pain is sensitivity to cold. Patients with neuropathic pain or arthritis usually describe a worsening of symptoms during the winter. AIMS OF THIS STUDY: We proposed to test the hypothesis that Notopterygium incisum has a positive effect on the cold sensitivity found in neuropathic pain. MATERIALS AND METHODS: In this study, we established chronic constriction injury (CCI) and cisplatin induced neuropathic pain mice models. Behavioral experiments and physiological examination methods were employed to investigate the effect of water extract of Notopterygium incisum (WN) on cold pain. RESULTS: We found WN reduced cold pain and allyl isothiocyanate (AITC, Transient Receptor Potential A1 (TRPA1 agonist)) induced pain. WN inhibited AITC induced calcium response in HEK 293 cells transfected with TRPA1 and dorsal root ganglion (DRG) neurons. Moreover, we found that oral administration of WN reduced cold allodynia and mechanical allodynia caused by (CCI) and cisplatin induced neuropathic pain. We also observed that oral administration of WN decreased responses to AITC in DRG neurons as well as expression of TRPA1 in the WN treated neuropathic pain model. CONCLUSIONS: The present study provide evidence that Notopterygium incisum alleviates cold allodynia in CCI and cisplatin induced neuropathic pain mouse models. WN alleviated neuropathic pain induced cold allodynia via directly modulating TRPA1. Our findings identify WN as a promising candidate for treating neuropathic pain that highlights a new mechanism of Notopterygium incisum on 'disperse cold'.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Humanos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Cisplatino , Células HEK293 , Qualidade de Vida , Canal de Cátion TRPA1/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo
3.
FASEB J ; 37(2): e22739, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583647

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is expressed in gastrointestinal tract and plays important roles in intestinal motility and visceral hypersensitivity. However, the potential role of TRPA1 in host defense, particularly against intestinal pathogens, is unknown. Here, we show that Trpa1 knockout mice exhibited increased susceptibility to Citrobacter rodentium infection, associated with the increased severity of diarrhea and intestinal permeability associated with the disrupted tight junctions (TJs) in colonic epithelia. We further demonstrated the expression of TRPA1 in murine colonic epithelial cells (CECs) and human epithelial Caco-2 cells both at protein level and transcription level. Using calcium imaging, TRPA1 agonists allyl isothiocyanates (AITC) and hydrogen peroxide were observed to induce a transient Ca2+ response in Caco-2 cells, respectively. Moreover, TRPA1 knockdown in Caco-2 cells resulted in the decreased expression of TJ proteins, ZO-1 and Occludin, and in the increased paracellular permeabilities and the reduced TEER values of Caco-2 monolayers in vitro. Furthermore, inhibition of TRPA1 by HC-030031 in the confluent Caco-2 cells caused the altered distribution and expression of TJ proteins, ZO-1, Occludin, and Claudin-3, and exacerbated the bacterial endotoxin lipopolysaccharide (LPS)-induced damage to these TJ proteins and actin cytoskeleton. By contrast, AITC pretreatment restored the distribution and expression of these TJ proteins in the confluent Caco-2 cells upon LPS challenge. Our results identify an unrecognized protective role of TRPA1 in host defense against an enteric bacterial pathogen by maintaining colonic epithelium barrier function, at least in part, via preserving the distribution and expression of TJ proteins in CECs.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Camundongos , Humanos , Animais , Células CACO-2 , Ocludina/genética , Ocludina/metabolismo , Lipopolissacarídeos/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Permeabilidade , Infecções por Enterobacteriaceae/patologia , Proteínas do Citoesqueleto/metabolismo , Camundongos Knockout , Junções Íntimas/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
4.
J Physiol Biochem ; 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512286

RESUMO

Rutin is a natural anti-inflammatory ingredient widely found in medicinal plants. Studies have shown that rutin inhibits mast cell degranulation and the release of inflammatory mediators. Mast cell P2X7 receptor mediates mast cell degranulation and serves as a therapeutic target for inflammatory pain. Herein, the aim of this study was to investigate whether the anti-inflammatory mechanism of rutin is related to the mast cell P2X7 receptor. Our results showed that rutin could inhibit [Ca2+]i elevation induced by 5 mM ATP or 30 µM BZATP in a concentration-dependent manner in mouse peritoneal mast cells. Rutin also suppressed the inward current mediated by P2X7 receptor. In vivo, rutin could significantly inhibit the mechanical hypersensitivity induced by 100 mM ATP that is associated with P2X7 receptor in mast cells. Moreover, molecular docking revealed the high affinity between rutin and the P2X7 receptor crystal structure. Collectively, this study demonstrated that rutin attenuated inflammatory pain by inhibiting the activity of P2X7 receptor in mast cells.

5.
Biochem Pharmacol ; 208: 115368, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36493846

RESUMO

Chronic itch is the most prominent feature of atopic dermatitis (AD), and antihistamine treatment is often less effective in reducing clinical pruritus severity in AD. Multiple studies have shown that histamine-independent itch pathway is thought to predominate in AD-induced chronic itch. Mas-related G-protein-coupled receptor (Mrgpr) A3+ sensory neurons have been identified as one of the major itch-sensing neuron populations, and transient receptor potential (TRP) channel A1 is the key downstream of MrgprA3-mediated histamine-independent itch. MrgprA3-TRPA1 signal pathway is necessary for the development of chronic itch and may be the potentially promising target of chronic itch in AD. Dictamnine is one of the main quinoline alkaloid components of Cortex Dictamni (a traditional Chinese medicine widely used in clinical treatment of skin diseases). However, the anti-inflammatory and anti-pruritic effect of dictamnine on AD have not been reported. In this study, we used the 2,4-dinitrofluorobenzene (DNFB)-induced AD mouse model to observe the scratching behavior, inflammatory manifestations, and to detect the expression of MrgprA3 and TRPA1 in skin and DRG. The data demonstrated that dictamnine effectively inhibited AD-induced chronic itch, inflammation symptoms, epidermal thickening, inflammatory cell infiltration, and downregulated the expression of MrgprA3 and TRPA1. Furthermore, dictamnine restrained the excitability of MrgprA3+ and TRPA1+ neurons. Molecular docking also indicated that dictamnine has better binding affinity with MrgprA3. These results suggest that dictamnine may inhibit chronic itch caused by AD through the MrgprA3-TRPA1 mediated histamine-independent itch pathway, and may have a potential utility in AD treatment.

6.
Inflamm Res ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329130

RESUMO

BACKGROUND: Rosacea, a chronic inflammatory disorder of the facial skin, is effectively treated by intense pulsed light (IPL). OBJECTIVE: To explore the potential molecular mechanism underlying the photobiomodulation effect of IPL for rosacea treatment. METHODS: Skin samples from patients with rosacea were subjected to histological and immunohistological staining. Ten patients were followed up after IPL treatment using the VISIA® skin analysis system, and the severity was assessed. In vivo, skin changes in mice with rosacea-like inflammation induced by intradermal injection of 320 µM LL-37 with or without IPL treatment were evaluated using L*a*b colorimetry as well as histological and immunological staining. In vitro, LL-37-stimulated mast cells (MCs) with or without IPL treatment were evaluated for protein expression of matrix metalloproteinase (MMP)-9, kallikrein-related peptidase 5 (KLK5), and cathelicidin using western blotting and qRT-PCR. RESULTS: Profound infiltration of inflammatory cells and evident MC degranulation were found in rosacea skin lesions. The expression of rosacea-related biomarkers and inflammatory cytokines was higher in lesional areas than in non-lesional areas, as demonstrated via immunochemical staining. In all patients, rosacea severity reduced after IPL therapy. In vivo, IPL alleviated inflammation in mice with rosacea-like inflammation, as demonstrated by the significantly decreased MMP-9, KLK5, and cathelicidin expression and reduced percentage of degranulating MCs. In vitro, IPL decreased MMP-9, KLK5, and cathelicidin expression in P815 cells, reducing the release of inflammatory cytokines and inhibiting rosacea-like inflammatory reactions. CONCLUSION: The photobiomodulation effect of IPL for rosacea treatment may inhibit MC degranulation and alleviate inflammatory reactions.

7.
J Inflamm Res ; 15: 5989-5998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324862

RESUMO

Background: Senecio scandens Buch.-Ham (S. scandens) belongs to the Compositae family. As a Traditional Chinese medicine, S. scandens has been used in China to treat conjunctivitis, mastitis and vaginitis, it also has the function of antibacterial and relieving itching. Methods: Water extract of S. scandens (WSS) was prepared and its quality was controlled by HPLC. The antipruritic effects of WSS were evaluated by itch behavioral experiments. The oxazolone and compound 48/80 were induced to mice scratch behavior, scratch was recorded 30 min after sensitization. The relationship between the antipruritic mechanism and MrgprB2 on mast cell was studied by using mast cell-deficient Kit (W-sh) "Sash" mice and MrgprB2-/- mice. The mast cells were observed by toluidine blue staining. In vitro, the effects of WSS on MrgprB2 were studied by calcium imaging; The whole-cell patch clamp method recorded the MrgprB2 mediate voltage-dependent currents in mast cells. Results: The content of rutin (0.012%) and hyperin (0.014%) in the WSS were determined. WSS could ameliorate the pruritus induced by Oxazolone (inhibition was 41.19%, p = 0.004) and compound 48/80 (inhibition was 50.29%, p = 0.001). Meanwhile, WSS could reduce the number of mast cells in mice skin tissue with allergic contact dermatitis (ACD) (p = 0.002) or compound 48/80 (p = 0.013). In addition, WSS could inhibit the calcium influx (1 mg/mL: p = 0.001, 3 mg/mL: p < 0.0001) and the voltage-dependent currents induced by activation of MrgprB2 on mast cell. WSS also attenuated the calcium influx induced by compound 48/80 in HEK293 cells overexpressing MrgprB2/X2. Conclusion: These results showed that WSS could ameliorate pruritus by inhibiting MrgprB2 receptor on mast cells.

8.
Plants (Basel) ; 11(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145797

RESUMO

Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that the genomic sequence of 5B chromosome (IWGSC RefSeq v2.1) does not contain the tandem repeat pTa-275, and the tandem repeat (GA)26 distributed throughout the whole 5B chromosome. The nondenaturing fluorescence in situ hybridization (ND-FISH) using the oligonucleotide (oligo) probes derived from pTa-275 and (GA)26 indicated that one signal band of pTa-275 and two signal bands of (GA)26 appeared on the 5B chromosome of Chinese Spring wheat, indicating the aggregative distribution patterns of the two kinds of tandem repeats. Single-copy FISH indicated that the clustering region of pTa-275 and the two clustering regions of (GA)26 were located in ~160-201 Mb, ~153-157 Mb, and ~201-234 Mb intervals, respectively. Using ND-FISH and single-copy FISH technologies, the translocation breakpoint on the 5BS portion of the translocation T7BS.7BL-5BS, which exists widely in north-western European wheat cultivars, was located in the region from 157,749,421 bp to 158,555,080 bp (~0.8 Mb), and this region mainly contains retrotransposons, and no gene was found. The clustering regions of two kinds of tandem repeats on wheat chromosome 5B were determined and this will be helpful to improve the future sequence assembly of this chromosome. The sequence characteristics of the translocation breakpoint on the translocation T7BS.7BL-5BS obtained in this study are helpful to understand the mechanism of wheat chromosome translocation.

9.
Front Plant Sci ; 13: 992934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105696

RESUMO

To study the effects of structural alterations of chromosomes caused by tandem repeats on the meiotic recombination, the wheat (Triticum aestivum L.) 5A chromosomes with different structure from ten wheat cultivars were used to investigate their meiotic recombination using non-denaturing fluorescence in situ hybridization (ND-FISH) technology. Fifteen cross combinations were carried out and they were divided into seven F1 categories. The structural difference between the intercalary regions of the long arms of the two 5A chromosomes (5AL) in the F1 categories III, VI, and VII was greater than that in the categories I and II, subsequently, the recombination frequencies in the distal regions of the 5AL arm in the progenies from the three categories were significantly lower than that from the categories I and II. For the two 5A chromosomes in the F1 categories VI and VII, the structural differences in the distal regions of both of the two arms were greater than that in the categories IV and V. So, the recombination frequencies in the intercalary region of the 5AL arm in the progeny from the categories IV and V were higher than that in the progeny from the categories VI and VII. The breakage of 5A chromosome together with the 5A translocations and the breakage of some other chromosomes were observed in the progeny from the F1 categories V, VI, and VII. These chromosomal variations were not observed in the progenies from the other four F1 categories. In conclusion, the smaller structural difference between the 5A chromosomes in distal regions of the two arms resulted in a higher recombination frequency in interstitial region and vice versa. The 5A chromosome with complex cytological structure can be used to induce genetic variations of wheat genome.

10.
Plants (Basel) ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015420

RESUMO

Single-copy FISH analysis is a useful tool to physically locate a given sequence on chromosome. Centromeric single-copy sequences can be used to locate the position of centromere and disclose the subtle differences among different centromeres. Nine centromeric single-copy sequences 1R1, 3R1, 4R1, 4R2, 5R1, 5R2, 6R2, 6R3, and 7R1 were cloned from Kustro (Secale cereale L.). FISH analysis using these sequences as probes indicated that the signals of 1R1, 3R1, 4R1, 4R2, 5R1, 5R2, 6R1, 6R2, and 7R1 were located in the centromeric regions of rye 1R, 3R, 4R, 4R, 5R, 5R, 6R, 6R, and 7R chromosomes, respectively. In addition, for each of the centromeric single-copy sequences, high sequence similarity was observed among different Secale species. Combined with rye genomic sequence, single-copy FISH analysis indicated that the 1BL.1RS translocations in wheat cultivar CN17 and wheat line 20T363-4 contained the centromeric segment of 1R chromosome from 349,498,361 to 349,501,266 bp, and the 1BL.1RS translocations in the other two wheat cultivars did not contain this segment. The nine sequences are useful in determining the centromere location on rye chromosomes, and they have the potential to disclose the accurate structural differences of centromeres among the wheat-rye centric fusion translocation chromosomes; therefore, more centromeric single-copy sequences are needed.

11.
J Ethnopharmacol ; 298: 115667, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030028

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligustrazine, an important active ingredient extracted from Ligusticum chuanxiong hort, has been widely used to cure cardiovascular diseases and exerts an analgesic effect. AIMS OF THIS STUDY: The aim of this study is to investigate whether ligustrazine mitigates chronic venous disease (CVeD)-induced pain and to explore its underlying mechanisms. MATERIALS AND METHODS: A mouse model of CVeD was established by vein ligature. Ligustrazine was administered intraperitoneally to CVeD mice for a single injection (20 mg/kg, 100 mg/kg, and 200 mg/kg) or once a day for three weeks (100 mg/kg and 200 mg/kg), and TRPA1 overexpressed HEK 293 cells were treated with ligustrazine (600 µM) in the presence of mustard oil (100 µM) for 2 min. Patch clamp and calcium imaging were used to measure the inhibitory response of ligustrazine on DRG neurons and TRPA1 transfected HEK293 cells. RESULTS: The present results showed that mice receiving vein ligature surgery exhibited obvious pain hypersensitivity to mechanical, cold and thermal stimuli, whereas ligustrazine significantly reversed the pain hyperalgesia in CVeD mice. Furthermore, ligustrazine desensitized transient receptor potential ankyrin 1 (TRPA1) activity in the dorsal root ganglion (DRG) neurons, resulting in suppressing the DRG neuronal excitability in the CVeD mice. However, ligustrazine could not directly inhibit the response of TRPA1 transfected HEK293 cells to mustard oil. Strikingly, ligustrazine restricted the macrophage infiltration and decreased the mRNA levels of Interleukin-1ß (IL-1ß) and NOD-like receptor protein 3 (NLRP3) in the DRG neurons of the CVeD mice. CONCLUSIONS: The present study provided evidence that ligustrazine alleviated pain hypersensitivity to mechanical, cold and thermal stimuli in CVeD mice. Ligustrazine could weaken the activity of TRPA1 in the DRG to mitigate CVeD-induced pain hyperalgesia mainly through inhibition of inflammation. Our findings identify that ligustrazine may be a new therapeutic agent for the treatment of CVeD-induced pain.


Assuntos
Dor Crônica , Gânglios Espinais , Animais , Dor Crônica/metabolismo , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Inflamação/metabolismo , Camundongos , Canal de Cátion TRPA1/metabolismo
12.
Front Plant Sci ; 13: 928014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845635

RESUMO

It was reported that the chromosome 6R of rye (Secale cereale L.) carries stripe rust resistance gene Yr83, and the region with the candidate resistance gene(s) still needs to be narrowed down. This study confirmed that the chromosome 6RLAr derived from rye AR106BONE contains stripe rust resistance gene(s). A wheat-rye T6BS.6RLAr translocation chromosome, a wheat-rye small-segment translocation T6RLAr-6AS.6AL, and three kinds of deleted T6BS.6RLAr translocations, T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, were identified. Translocations T6BS.6RLAr, T6BS.6RLAr-2, and T6RLAr-6AS.6AL were highly resistant to stripe rust and T6BS.6RLAr-1 and T6BS.6RLAr-3 were highly susceptible. The molecular markers specific to 6RL determined that the three regions of the 6RLAr arm from 732,999,830 bp to the telomere, from 735,010,030 to 848,010,414 bp, and from 848,011,262 bp to the telomere were deleted from T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, respectively. T6BS.6RLAr-2 and T6RLAr-6AS.6AL contained the segment that was deleted in T6BS.6RLAr-3. Therefore, it can be concluded that about 37 Mb segment from 848,011,262 bp to the telomere carried stripe rust resistance gene(s), and it was smaller than that with the Yr83 gene. Gene annotation indicated that about 37 Mb region contains 43 potential resistance genes, and 42 of them are nucleotide-binding site and leucine-rich repeat (NBS-LRR)-like resistance protein genes. The results in this study narrowed down the size of the region with candidate stripe rust resistance gene(s) on the 6RL arm, and the T6RLAr-6AS.6AL is a promising small-segment translocation for improvement of wheat cultivars.

13.
Front Behav Neurosci ; 16: 873750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813592

RESUMO

Cancer induced bone pain (CIBP) occurs in patients with advanced osteosarcoma or metastasized bone tumors that can negatively affects the patient's quality of life. However, motor impairment in CIBP is still understudied. To improve the quality of life of patients with CIBP, the study of CIBP induced movement impairment is of particular importance. Here, we presented a model of metastatic cancer induced bone pain caused by an allograft of Lewis lung cancer cells. In this method, we injected Lewis lung cancer cells into the femoral medulla cavity and recorded the pain behavior and motor behavior after CIBP surgery. We observed enhanced pain after the initial surgery. Interestingly, we found the latency on rotarod was significantly reduced concomitant with tumor growth and pain. This result indicated that the motor coordination and balance were severely impaired in CIBP. We also found the pain and motor behavioral differences in models that severed the patellar ligament vs. maintaining the patellar ligament. These findings provide a novel clue for further investigating the mechanisms responsible for the generation and development of CIBP.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35656472

RESUMO

Angelica dahurica, belonging to the family Apiaceae, is a well-known herbal medicine. The roots of Angelica dahurica are commonly used for the treatment of headache, toothache, abscess, furunculosis, and acne. However, little is known about their analgesic molecular mechanism underlying pain relief. In this study, we used behavioral tests to assess the analgesic effect of the ADE (Angelica dahurica extracts) on CFA (complete Freund's adjuvant)-induced inflammatory pain mice models. TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1) protein activity in dorsal root ganglion (DRG) was assessed with a calcium imaging assay. TRPV1 expression was detected with western blot and immunohistochemistry. Then, we examined the constituents of ADE using combined ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC/Q-TOF-MS). Our results showed that ADE effectively attenuated mechanical and thermal hypersensitivities in CFA-induced inflammatory pain model in mice. ADE also significantly reduced the activity and the protein expression of TRPV1 in DRG from CFA mice. Therefore, ADE might be an attractive and suitable analgesic agent for the management of chronic inflammatory pain.

15.
Immunol Lett ; 248: 37-44, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714789

RESUMO

A novel mast cell-specific G-protein-coupled receptor (GPCR), known as Mas-related G protein-coupled receptor-B2 (MRGPRB2), plays important roles in immune response. However, the opening of ion channels mediated by MRGPRB2 activation remains unclear. In this study, we found that [Ca2+]i elevation and voltage-dependent current generated by MRGPRB2 activation were correlated with extracellular calcium concentration. The increases in [Ca2+]i and voltage-dependent current caused by MRGPRB2 activation were blocked by U73122 (PLC blocker) or 2-APB (IP3 blocker) or synta66 (ORAI blocker). The voltage-dependent current induced by MRGPRB2 was inhibited by calcium-activated chlorine channel (CACCS) blockers, DIDS, or NPPB. Our results indicated the involvement of the PLC-IP3-ORAI signaling pathway and CACCS in MRGPRB2-mediated mast cell activation.


Assuntos
Cálcio , Mastócitos , Animais , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cloreto/metabolismo , Fosfatos de Inositol/metabolismo , Camundongos , Peritônio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fosfolipases Tipo C/metabolismo
16.
BMC Plant Biol ; 22(1): 212, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468732

RESUMO

BACKGROUND: The wheat-rye 1BL.1RS translocations have played an important role in common wheat breeding programs. Subtelomeric tandem repeats have been often used to investigate polymorphisms of 1RS arms, but further research about their organizations on the 1RS chromosome is needed. RESULTS: 162 1RS arms from a wild rye species (Secale strictum) and six cultivated rye accessions (Secale cereale L.) (81 plants), 102 1BL.1RS and one 1AL.1RS translocations were investigated using oligo probes Oligo-TaiI, Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200 and Oligo-pSc250, which were derived from tandem repeats TaiI, pSc119.2, pTa71, pSc200 and pSc250, respectively. The variations of 1RS arms were revealed by signal intensity of probes Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200 and Oligo-pSc250. Proliferation of rDNA sequences on the 1RS chromosomes was observed. According to the presence of probe signals, 34, 127 and 144 of the 162 1RS arms contained TaiI, pSc200 and pSc250, respectively, and all of them contained pSc119.2 and pTa71. Most of the 1RS arms in rye contained three kinds of subtelomeric tandem repeats, the combination of pSc119.2, pSc200 and pSc250 was most common, and only eight of them contained TaiI, pSc119.2, pSc200 and pSc250. All of the 1RS arms in 1BL.1RS and 1AL.1RS translocations contained pSc119.2, pTa71, pSc200 and pSc250, but the presence of the TaiI family was not observed. CONCLUSION: New organizations of subtelomeric tandem repeats on 1RS were found, and they reflected new genetic variations of 1RS arms. These 1RS arms might contain abundant allelic diversity for agricultural traits. The narrow genetic base of 1RS arms in 1BL.1RS and 1AL.1RS translocations currently used in agriculture is seriously restricting their use in wheat breeding programs. This research has found new 1RS sources for the future restructuring of 1BL.1RS translocations. The allelic variations of these 1RS arms should be studied more intensely as they may enrich the genetic diversity of 1BL.1RS translocations.


Assuntos
Cromossomos de Plantas , Secale , Cromossomos de Plantas/genética , DNA Ribossômico , Heterocromatina , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Secale/genética , Sequências de Repetição em Tandem/genética , Translocação Genética , Triticum/genética
17.
Complement Ther Med ; 68: 102839, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35483627

RESUMO

Diarrhea predominant irritable bowel syndrome (IBS) is a highly relapsing gastrointestinal disorder decreasing the quality of life. Existing studies indicated that the therapeutic effects maintained for a period of time after the treatments were discontinued (post-treatment therapeutic effects or PTTE). In this study, we aim to assess the PTTE of tongxie. We performed a multiple center, controlled, double blind study of patients with IBS randomized to tongxie (n = 120) or placebo (n = 120) for 4 weeks and followed up for 57 weeks. The primary outcomes were abdominal pains and stool consistency. The secondary outcomes were pain frequency and stool frequency. Tertiary outcomes were adverse effects and global overall symptom. The outcome data were collected at days 1, 2, 3, weeks 1 and 4 during the treatment and at days 1, 2, 3, until week 57 during the post-treatment. Significantly more patients receiving tongxie were clinical responders to the primary and secondary endpoints from day 1 until the end of the treatment. The positive effects of tongxie were maintained until 17-25 weeks after tongxie was discontinued. The relapse-free probabilities in the tongxie group were significantly higher than those in the placebo group (P < .001). Twenty-five weeks after the therapies were discontinued could be considered as IBS natural history. During this period, an average of 53.8-56.3% of patients (pool tongxie and placebo data together) had IBS symptoms (pain scale ≥ 3, stool consistency ≥ 5). In particular, at the end of this study (week 61), 145 (54.2%) patients had IBS symptoms. Our results provide clinical insights into efficient and cost-effective management of refractory IBS, and lend support to the IBS management that the selection of a therapy should consider both its effectiveness during treatment and its PTTE after the treatment.


Assuntos
Síndrome do Intestino Irritável , Dor Abdominal/tratamento farmacológico , Diarreia/tratamento farmacológico , Método Duplo-Cego , Humanos , Síndrome do Intestino Irritável/terapia , Recidiva Local de Neoplasia , Qualidade de Vida , Resultado do Tratamento
18.
Contact Dermatitis ; 86(4): 286-294, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066892

RESUMO

BACKGROUND: Although the Mas-related G-protein-coupled receptors (Mrgprs) play essential roles in itch detection, their contribution to allergic contact dermatitis (ACD)-associated itch remains unclear. OBJECTIVES: To investigate whether Mrgprs are involved in ACD and whether Mrgprs can be identified as potential therapeutic targets. METHODS: Mrgpr-clusterΔ-/- mice and human MrgprX1 (hMrgprX1) transgenic mice were used to evaluate the function of Mrgprs in oxazolone-induced ACD. RESULTS: Utilizing an ACD model, we found that Mrgpr-clusterΔ-/- mice display significantly reduced pruritus. Among 12 Mrgprs deleted in Mrgpr-clusterΔ-/- mice, the expression of MrgprC11 and MrgprA3 was significantly increased in the ACD model, which also innervated the skin and spinal cord at higher-than-normal densities. The proportions of dorsal root ganglia neurons responding to bovine adrenal medulla peptide 8-22 and chloroquine were also remarkably increased in the ACD model, resulting in enhanced itch behaviour. To study the function of human Mrgprs in ACD-induced itch, we used hMrgprX1 transgenic mice, which rescued the severe itch defect of Mrgpr-clusterΔ-/- mice in the ACD model. Remarkably, pharmacological blockade of hMrgprX1 significantly attenuates ACD itch in hMrgprX1 transgenic mouse. CONCLUSIONS: Our study provides the first evidence that Mrgprs are involved in ACD-induced chronic itch, which provides new avenues for itch management in ACD.


Assuntos
Dermatite Alérgica de Contato , Animais , Bovinos , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/metabolismo , Gânglios Espinais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Pele/metabolismo
19.
Nat Neurosci ; 25(1): 72-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980925

RESUMO

Innate defensive behaviors triggered by environmental threats are important for animal survival. Among these behaviors, defensive attack toward threatening stimuli (for example, predators) is often the last line of defense. How the brain regulates defensive attack remains poorly understood. Here we show that noxious mechanical force in an inescapable context is a key stimulus for triggering defensive attack in laboratory mice. Mechanically evoked defensive attacks were abrogated by photoinhibition of vGAT+ neurons in the anterior hypothalamic nucleus (AHN). The vGAT+ AHN neurons encoded the intensity of mechanical force and were innervated by brain areas relevant to pain and attack. Activation of these neurons triggered biting attacks toward a predator while suppressing ongoing behaviors. The projection from vGAT+ AHN neurons to the periaqueductal gray might be one AHN pathway participating in mechanically evoked defensive attack. Together, these data reveal that vGAT+ AHN neurons encode noxious mechanical stimuli and regulate defensive attack in mice.


Assuntos
Núcleo Hipotalâmico Anterior , Neurônios GABAérgicos , Animais , Neurônios GABAérgicos/fisiologia , Camundongos , Substância Cinzenta Periaquedutal/fisiologia
20.
Pain ; 163(2): e202-e214, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252912

RESUMO

ABSTRACT: Gain-of-function and loss-of-function mutations in Nav1.7 cause chronic pain and pain insensitivity, respectively. The preferential expression of Nav1.7 in the peripheral nervous system and its role in human pain signaling make Nav1.7 a promising target for next-generation pain therapeutics. However, pharmacological agents have not fully recapitulated these pain phenotypes, and because of the lack of subtype-selective molecular modulators, the role of Nav1.7 in the perception of pain remains poorly understood. Scorpion venom is an excellent source of bioactive peptides that modulate various ion channels, including voltage-gated sodium (Nav) channels. Here, we demonstrate that Buthus martensii Karsch scorpion venom (BV) elicits pain responses in mice through direct enhancement of Nav1.7 activity and have identified Makatoxin-3, an α-like toxin, as a critical component for BV-mediated effects on Nav1.7. Blocking other Nav subtypes did not eliminate BV-evoked pain responses, supporting the pivotal role of Nav1.7 in BV-induced pain. Makatoxin-3 acts on the S3-S4 loop of voltage sensor domain IV (VSD4) of Nav1.7, which causes a hyperpolarizing shift in the steady-state fast inactivation and impairs inactivation kinetics. We also determined the key residues and structure-function relationships for the toxin-channel interactions, which are distinct from those of other well-studied α toxins. This study not only reveals a new mechanism underlying BV-evoked pain but also enriches our knowledge of key structural elements of scorpion toxins that are pivotal for toxin-Nav1.7 interactions, which facilitates the design of novel Nav1.7 selective modulators.


Assuntos
Dor Crônica , Picadas de Escorpião , Venenos de Escorpião , Animais , Dor Crônica/genética , Humanos , Camundongos , Fenótipo , Venenos de Escorpião/química , Venenos de Escorpião/toxicidade , Escorpiões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...