Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Mol Oncol ; 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932092

RESUMO

Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E ) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild-type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1-knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c-Myc via post-translational regulation. Pharmacological activation of PP2A with FTY-720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.

2.
Ann Palliat Med ; 10(4): 4799-4805, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33832319

RESUMO

Sphingosine 1-phosphate (S1P) regulates many cellular functions, such as differentiation, proliferation, migration, morphogenesis, cytoskeletal organization, adhesion, tight junction assembly, apoptosis and the localization of different cell types. S1P also controls the migration of osteoclast precursors between the blood and bone, and it keeps osteoclast precursors away from bone surfaces to reduce bone degradation, thus preventing bone decay. Osteoporosis is a systemic bone disease that predisposes patients to bone fracture due to decreased bone density and quality, disrupted bone microarchitecture, and increased bone fragility. As the global elderly population increases, the incidence of osteoporosis will greatly increase, and the associated adverse consequences will become more serious. S1P plays an important role in homeostasis, and disruption of the balance between osteoblasts and osteoclasts may induce osteoporosis. A high frequency of osteoporotic fracture is associated with increased plasma S1P levels. Studies have shown that S1P is an important therapeutic target in osteoporosis because it controls the migration of osteoclast precursors, vigorously maintains the bone mineralization process, and is a critical regulator of osteoclastogenesis. Improved understanding of the functional roles and molecular mechanisms of S1P in bone turnover could facilitate the discovery of novel targets for the treatment of osteoporosis. This review provides a critical discussion of the role of S1P in osteoporosis and treatments.

3.
Front Immunol ; 12: 614429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717101

RESUMO

The worldwide epidemic of metabolic diseases, especially obesity and other diseases caused by it, has shown a dramatic increase in incidence. A great deal of attention has been focused on the underlying mechanisms of these pathological processes and potential strategies to solve these problems. Chronic inflammation initiated by abdominal adipose tissues and immune cell activation in obesity is the major cause of the consequent development of complications. In addition to adipocytes, macrophages and monocytes, natural killer (NK) cells have been verified to be vital components involved in shaping the inflammatory microenvironment, thereby leading to various obesity-related metabolic diseases. Here, we provide an overview of the roles of NK cells and the interactions of these cells with other immune and nonimmune cells in the pathological processes of metabolic diseases. Finally, we also discuss potential therapeutic strategies targeting NK cells to treat metabolic diseases.

4.
Clin Res Cardiol ; 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710385

RESUMO

AIMS: To evaluate the impact of chronic obstructive pulmonary disease (COPD) on 10-year all-cause death and the treatment effect of CABG versus PCI on 10-year all-cause death in patients with three-vessel disease (3VD) and/or left main coronary artery disease (LMCAD) and COPD. METHODS: Patients were stratified according to COPD status and compared with regard to clinical outcomes. Ten-year all-cause death was examined according to the presence of COPD and the revascularization strategy. RESULTS: COPD status was available for all randomized 1800 patients, of whom, 154 had COPD (8.6%) at the time of randomization. Regardless of the revascularization strategy, patients with COPD had a higher risk of 10-year all-cause death, compared with those without COPD (43.1% vs. 24.9%; hazard ratio [HR]: 2.03; 95% confidence interval [CI]: 1.56-2.64; p < 0.001). Among patients with COPD, CABG appeared to have a slightly lower risk of 10-year all-cause death compared with PCI (42.3% vs. 43.9%; HR: 0.96; 95% CI: 0.59-1.56, p = 0.858), whereas among those without COPD, CABG had a significantly lower risk of 10-year all-cause death (22.7% vs. 27.1%; HR: 0.81; 95% CI: 0.67-0.99, p = 0.041). There was no significant differential treatment effect of CABG versus PCI on 10-year all-cause death between patients with and without COPD (p interaction = 0.544). CONCLUSIONS: COPD was associated with a higher risk of 10-year all-cause death after revascularization for complex coronary artery disease. The presence of COPD did not significantly modify the beneficial effect of CABG versus PCI on 10-year all-cause death. TRIAL REGISTRATION: SYNTAX: ClinicalTrials.gov reference: NCT00114972. SYNTAX Extended Survival: ClinicalTrials.gov reference: NCT03417050.

5.
Cancer Lett ; 508: 47-58, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33766751

RESUMO

Perineural invasion (PNI) is a common feature of pancreatic ductal adenocarcinoma (PDAC) and is one of the important causes of local recurrence in resected pancreatic cancer, but the molecular mechanism remains largely unexplored. Here, we used immunohistochemistry staining to determine the expression of CD74. Then the in vivo PNI model, in vitro neuroplasticity assay, cell proliferation assay, wound healing and Transwell-based invasion assay were performed to examine the function of CD74 in pancreatic cancer cell lines. ChIP assay and Luciferase reporter assay were used to illustrate the mechanism underlying CD74 induced GDNF expression. We confirmed that the expression level of CD74 was an independent predictor of PNI and poor prognosis for PDAC. Moreover, we found that upregulation of CD74 on PDAC enhanced its migration and invasive capabilities and potentiated the secretion of neurotrophic factor GDNF to promote the neuroplasticity. Mechanistically, CD74 promoted GDNF production via the AKT/EGR-1/GDNF axis in PDAC. Taken together, our findings suggest a supportive role of CD74 in the PNI of PDAC, and deepen our understanding of how cancer cells promote neuroplasticity in the microenvironment of PDAC.

6.
Proc Natl Acad Sci U S A ; 118(13)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33723013

RESUMO

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.

7.
Int J Pharm ; 599: 120419, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647416

RESUMO

To evaluate the effect of polymer structures on their unique characteristics and antibacterial activity, this study focused on developing amphiphilic copolymers by using three different molecules through RAFT polymerization. Three amphiphilic copolymers, namely, PBMA-b-(PDMAEMA-r-PPEGMA) (BbDrE), (PBMA-r-PDMAEMA)-b-PPEGMA (BrDbE), and PBMA-r-PDMAEMA-r-PPEGMA (BrDrE), are successfully self-assembled into spherical or oval shaped nanoparticles in aqueous solution and remain stable in PBS, LB, and 10% FBS solutions for at least 3 days. The critical micelle concentrations are 0.012, 0.025, and 0.041 mg/mL for BbDrE, BrDbE, and BrDrE, respectively. The zeta potential values under pH 5.5 and pH 7.4 conditions are 3.18/0.19, 8.57/0.046, and 2.54/-0.69 mV for BbDrE, BrDbE, and BrDrE nanoparticles, respectively. The three copolymers with similar monomer compositions show similar molecular weight and thermostability. Baicalein (BA) and ciprofloxacin (CPX) are encapsulated into the three nanoparticles to obtain BbDrE@BA/CPX, BrDbE@BA/CPX, and BrDrE@BA/CPX nanocomposites, with LC values of 63.9/78.3, 63.9/74.7, and 55.3/64.8, respectively. The two drugs are released from the three drug-loaded nanocomposites with 60%-95% release in pH 5.5 over 24 h and 15%-30% release in pH 7.4. The drug-loaded nanocomposites show synergistic antibacterial activity than the naked drug (2-8 fold reduction for CPX) or single drug-loaded nanocomposites (4-8 fold reduction for CPX) against Pseudomonas aeruginosa and Staphylococcus aureus. The drug-loaded nanocomposites inhibit the formation of bacterial biofilms above their MIC values and eliminate bacterial biofilms observed by fluorescent microscope. Finally, the nanocomposites improve the healing of infection induced by P. aeruginosa and S. aureus on rat dermal wounds. These results indicate that antimicrobial agents with different structures could be an alternative treatment strategy for bacteria-induced infection.

8.
Aging (Albany NY) ; 13(7): 9542-9565, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33714957

RESUMO

Vascular dementia (VD) is a common disease that occurs during human aging. Gastrodin (GAS) has potential benefits for the prevention and treatment of VD. In the present study, we investigated the effects of GAS on cognitive dysfunction in rats with VD induced by permanent middle cerebral artery occlusion (pMCAO) and explored the underlying mechanism. Immunohistochemical and western blot analyses revealed that GAS attenuated hippocampal levels of LC3 (microtubule-associated protein 1 light chain 3), p62, and phosphorylated CaMKII (Ca2+-calmodulin stimulated protein kinase II) in VD rats. Additionally, our results revealed that cobalt chloride blocked autophagic flux in HT22 cells, which was confirmed by increased levels of LC3 and p62 when combined with chloroquine. Notably, GAS ameliorated the impaired autophagic flux. Furthermore, we confirmed that GAS combined with KN93 (a CaMKII inhibitor) or CaMKII knockdown did not impact the reduced p62 levels when compared with GAS treatment alone. Furthermore, a co-immunoprecipitation assay demonstrated that endogenous p62 bound to CaMKII, as confirmed by mass spectrometric analysis after the immunoprecipitation of p62 from HT22 cells. These findings revealed that GAS attenuated autophagic flux dysfunction by inhibiting the Ca2+/CaMKII signaling pathway to ameliorate cognitive impairment in VD.

9.
Am Heart J ; 236: 49-58, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33621541

RESUMO

BACKGROUND: Current guidelines recommend administering dual antiplatelet therapy (DAPT) for 12 months to patients with acute coronary syndromes (ACS) and without contraindications after drug-eluting stent (DES) implantation. A recent study reported that 3 months of DAPT followed by ticagrelor monotherapy is effective and safe in ACS patients undergoing DES implantation compared with the standard duration of DAPT. However, it is unclear whether antiplatelet monotherapy with ticagrelor alone versus ticagrelor plus aspirin reduces the incidence of clinically relevant bleeding without increasing the risk of major adverse cardiovascular and cerebrovascular events (MACCEs) in ACS patients undergoing percutaneous coronary intervention (PCI) with DES implantation guided by either intravascular ultrasound (IVUS) or angiography who have completed a 1-month course of DAPT with aspirin plus ticagrelor. METHODS: The IVUS-ACS and ULTIMATE-DAPT is a prospective, multicenter, randomized, controlled trial designed to determine (1) whether IVUS-guided versus angiography-guided DES implantation in patients with ACS reduces the risk of target vessel failure (TVF) at 12 months and (2) whether ticagrelor alone versus ticagrelor plus aspirin reduces the risk of clinically relevant bleeding without increasing the risk of MACCE 1-12 months after the index PCI in ACS patients undergoing DES implantation guided by either IVUS or angiography. This study will enroll 3486 ACS patients eligible for DES implantation, as confirmed by angiographic studies. The patients who meet the inclusion criteria and none of the exclusion criteria will be randomly assigned in a 1:1 fashion to the IVUS- or angiography-guided group (first randomization). All enrolled patients will complete a 1-month course of DAPT with aspirin plus ticagrelor after the index PCI. Patients with no MACCEs or major bleeding (≥Bleeding Academic Research Consortium (BARC) 3b) within 30 days will be randomized in a 1:1 fashion to either the ticagrelor plus matching placebo (SAPT)group or ticagrelor plus aspirin (DAPT)group for an additional 11 months (second randomization). The primary endpoint of the IVUS-ACS trial is TVF at 12 months, including cardiac death, target vessel myocardial infarction (TVMI), or clinically driven target vessel revascularization (CD-TVR). The primary superiority endpoint of the ULTIMATE-DAPT trial is clinically relevant bleeding, defined as BARC Types 2, 3, or 5 bleeding, and the primary non-inferiority endpoint of the ULTIMATE-DAPT trial is MACCE, defined as cardiac death, myocardial infarction, ischemic stroke, CD-TVR, or definite stent thrombosis occurring 1-12 months in the second randomized population. CONCLUSION: The IVUS-ACS and ULTIMATE-DAPT trial is designed to test the efficacy and safety of 2 different antiplatelet strategies in ACS patients undergoing PCI with DES implantation guided by either IVUS or angiography. This study will provide novel insights into the optimal DAPT duration in ACS patients undergoing PCI and provide evidence on the clinical benefits of IVUS-guided PCI in ACS patients.

10.
Catheter Cardiovasc Interv ; 97 Suppl 2: 966-975, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33605036

RESUMO

OBJECTIVES: We evaluated the safety and efficacy of the novel dual-therapy sirolimus-eluting and endothelial progenitor cell (EPC) capture COMBO stent. BACKGROUND: (Very) late stent thrombosis (ST) and neo-atherosclerosis limit the performance of drug-eluting stents. The capture of EPCs accelerates stent re-endothelialization, thereby potentially decreasing the risk of restenosis and ST. METHODS: In total, 440 patients with de novo lesions in native coronary arteries were randomized (1:1) to either receive the COMBO stent (n = 220) or Nano polymer-free sirolimus-eluting stent (n = 220). The primary endpoint was the 9-month angiographic in-segment late lumen loss (LLL). Secondary endpoints included target lesion failure (TLF), a patient-oriented composite endpoint (PoCE), and ST. RESULTS: At 9 months, the COMBO in-segment LLL (0.29 ± 0.46 mm) was non-inferior to that of the Nano comparator stent (0.31 ± 0.44 mm; pnon-inferiority < .0001). Clinical outcomes were also similar between the COMBO and Nano stents, with TLF rates of 9.3% and 7.9% (p = .61) at 12 months, and 9.4% and 8.0% (p = .62) at 24 months, respectively. The PoCE rate was 14.8% and 10.6% (p = .19) at 12 months, and 16.0% and 11.3% (p = .16) at 24 months, respectively. Ischemia-driven target lesion revascularization rates were 6.0% and 3.7% (p = .26) at 12 months, and 6.2% and 3.8% (p = .26) at 24 months, respectively. No case of ST occurred in either group. CONCLUSIONS: The RECOVERY trial has shown the COMBO stent was effective, meeting the primary non-inferiority angiographic endpoint, and safe, with an overall low rate of clinical events in both stent groups, including no ST for up to 2 years.

11.
Prostate ; 81(5): 271-278, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556191

RESUMO

BACKGROUND: A growing number of studies indicate that circular RNAs (circRNAs) play critical roles in human diseases, and show great potential as biomarkers and therapeutic targets. This study aimed to investigate the expression and function of circANKS1B in prostate cancer (PC). METHODS: The expression of circANKS1B and miR-152-3p was analyzed by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Cell migration and invasion were measured using a transwell assay. The interaction between circANKS1B and miR-152-3p was confirmed by a dual-luciferase reporter gene assay. Rescue experiments were conducted to determine whether circANKS1B regulated the invasion of PC cells via the circANKS1B-miR-152-3p-TGF-α pathway. RESULTS: The expression of circANKS1B was markedly upregulated in both PC cells and tissues. Moreover, high circANKS1B expression was associated with poor prognosis in PC patients. Dual-luciferase reporter assay indicated that circANKS1B directly bound to miR-152-3p. Furthermore, circANKS1B negatively regulated miR-152-3p expression. Knockdown of circANKS1B markedly suppressed cell migration and invasion and TGF-α expression in PC cells, whereas the effects of circANKS1B silencing were reversed by miR-152-3p deficiency. In addition, the impact of miR-152-3p silencing on invasion of circANKS1B-deficient PC cells was also abrogated by TGF-α deficiency. Overall, circANKS1B acts as a sponge for miR-152-3p to promote PC progression by upregulating TGF-α expression. CONCLUSION: Our findings reveal that circANKS1B may be a potential prognostic biomarker and therapeutic target for PC.

12.
J Microbiol ; 59(4): 376-388, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33630250

RESUMO

Aquatic microorganisms in the sediment and water column are closely related; however, their distribution patterns between these two habitats still remain largely unknown. In this study, we compared sediment and water microeukaryotic and bacterial microorganisms in aquaculture ponds from different areas in China, and analyzed the influencing environmental factors as well as the inter-taxa relationships. We found that bacteria were significantly more abundant than fungi in both sediment and water, and the bacterial richness and diversity in sediment were higher than in water in all the sampling areas, but no significant differences were found between the two habitats for microeukaryotes. Bacterial taxa could be clearly separated through cluster analysis between the sediment and water, while eukaryotic taxa at all classification levels could not. Spirochaetea, Deltaproteobacteria, Nitrospirae, Ignavibacteriae, Firmicutes, Chloroflexi, and Lentimicrobiaceae were more abundantly distributed in sediment, while Betaproteobacteria, Alphaproteobacter, Cyanobacteria, Roseiflexaceae, Dinghuibacter, Cryomorphaceae, and Actinobacteria were more abundant in water samples. For eukaryotes, only Cryptomonadales were found to be distributed differently between the two habitats. Microorganisms in sediment were mainly correlated with enzymes related to organic matter decomposition, while water temperature, pH, dissolved oxygen, and nutrient levels all showed significant correlation with the microbial communities in pond water. Intensive interspecific relationships were also found among eukaryotes and bacteria. Together, our results indicated that eukaryotic microorganisms are distributed less differently between sediment and water in aquaculture ponds compared to bacteria. This study provides valuable data for evaluating microbial distributions in aquatic environments, which may also be of practical use in aquaculture pond management.

13.
J Basic Microbiol ; 61(2): 157-164, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393125

RESUMO

The physiological responses of desert moss crusts under four artificial media (Beneck, Part, BG11, and Hogland) were investigated to evaluate the function of culture media during different culture periods. The results showed that the value of malondialdehyde (MDA) was at a maximum at 11d, on the contrary, chlorophyll-a, soluble protein, and soluble sugar were at a minimum. As the time increased, the value of MDA and soluble protein decreased faster in the Hogland, while the value of chlorophyll-a and soluble sugar increased. At the end of the culture period, the value of chlorophyll-a and soluble sugar was at a maximum in the Hogland, while the value of MDA and soluble protein was at a minimum. The results suggested that the Hogland medium had a promoting effect on the growth of desert moss crusts. The selected artificial cultivation medium towards wider and larger scale field applications of cultural desert biocrust was widely anticipated.

14.
J Drug Target ; : 1-30, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263461

RESUMO

Hyperglycemia is responsible for the major pathophysiological factor of diabetes-associated vascular endothelial injury, which mainly resulted from the disturbance of equilibrium between ROS generation and elimination. Eucalyptol was verified with exact anti-oxidation effects via stimulating the secretion of endogenous antioxidant enzymes against ROS. However, the volatility, instability and poor water solubility of eucalyptol limited its pharmacological activities in vivo. In this study, we developed a carboxymethyl chitosan-coated lipid nanoparticles for eucalyptol (CMC/ELN) to facilitate oral administration. A thin lipid film dispersion method was used to prepare the ELN. After CMC coating, the diameter of ELN increased from 166 nm to 177 nm and charge reversal was observed. The nanocarrier enhanced the protective effects of eucalyptol both in the high level of glucose (HG)-damaged HUVECs and endothelial injury in type I diabetes mellitus (T1DM) rat model. Furthermore, the mechanism of eucalyptol on the promotion of Nrf2 and HO-1 and reduction on Keap1 expression have been verified both in the in vitro and in vivo model. Besides, the pharmacokinetics data were verified the promotion of the oral eucalyptol absorption by the nanocarrier. Taken together, we established an optimal oral delivery system that promoted oral administration of eucalyptol to exert protective effects on hyperglycemia-induced vascular endothelial injury.

15.
Clin Interv Aging ; 15: 2095-2107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204075

RESUMO

Objective: Severe or critical patients with coronavirus disease 2019 (COVID-19) are at increased risk for developing acute kidney injury (AKI). However, the rate of AKI in patients of different severities and independent predictive factors associated with AKI are not well understood. Patients and Methods: We enrolled 107 severely or critically ill elderly patients with COVID-19 who were admitted to the intensive care unit (ICU) in Wuhan, China. AKI was defined according to the 2012 KDIGO criteria. We explored the association between AKI and in-hospital mortality using logistic regression. A predictive nomogram was formulated to predict the AKI development of patients with COVID-19 based on multivariate logistic regression. Results: A total of 107 elderly patients were enrolled during the study period. The mean age was 70 (64-78) years, and 69 (64.5%) were men. For the 107 patients, the degree of severity of COVID-19 was categorized as 37 patients with the severe type (34.6%) and 70 patients with the critical type (65.4%). Overall, 48 of the 107 patients (44.9%) developed AKI during their hospitalization, while AKI occurred in 7 (18.9%) out of the 37 severe patients and 41 (44.9%) out of the 70 critical patients. Of the AKI patients, 35.4% (17/48) required continuous renal replacement therapy, including 14.3% of AKI patients in severe cases and 39.0% of AKI patients in critical cases. Kaplan-Meier analysis demonstrated that patients with AKI had a significantly higher risk for in-hospital mortality than severely and critically ill patients without AKI. Multivariate logistic regression analysis showed that AKI (OR = 33.74; 95% CI = 3.34-341.29; P = 0.003), septic shock (OR = 15.58; 95% CI = 2.08-116.78; P = 0.008), invasive mechanical ventilation (OR = 18.44; 95% CI = 2.35-144.69; P = 0.006), and oxygenation index (OR = 0.99; 95% CI = 0.98-1.000; P = 0.014) were independent risk factors for in-hospital mortality. A nomogram was established based on the multivariate analysis results. The C-index for the developed AKI model was 0.935 (95% CI, 0.892-0.978); when 10-fold cross validation was used to validate the model, the corrected C-index was 0.825. Conclusion: AKI is common among COVID-19 patients admitted to the ICU and is recognized as a marker of disease severity. The proposed nomogram accurately predicted AKI development in ICU patients with COVID-19 based on individual characteristics. Therefore, the strategy for kidney protection against severe or critical pneumonia is appropriate.


Assuntos
Lesão Renal Aguda , Infecções por Coronavirus , Mortalidade Hospitalar , Pandemias , Pneumonia Viral , Lesão Renal Aguda/diagnóstico , Lesão Renal Aguda/epidemiologia , Lesão Renal Aguda/etiologia , Idoso , Betacoronavirus/isolamento & purificação , China/epidemiologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/mortalidade , Estado Terminal/mortalidade , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Nomogramas , Pneumonia Viral/complicações , Pneumonia Viral/mortalidade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
16.
Biomed Res Int ; 2020: 7183629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134385

RESUMO

Long noncoding RNA cancer susceptibility candidate 2 (CASC2) has been reported to play an anticancer role in papillary thyroid cancer (PTC). Radioiodine (131I) is a common option for the treatment of PTC. However, the role and mechanism of CASC2 in 131I sensitivity remain unclear. In this study, 131I-resistant cells were constructed through continuous treatment of 131I. The expression levels of CASC2 and miR-155 were measured by qRT-PCR. The IC50 of 131I was analyzed by cell viability using MTT assay. Flow cytometry was conducted to determine cell apoptosis induced by 131I. The association between CASC2 and miR-155 was evaluated by luciferase assay and RNA immunoprecipitation. A mouse xenograft model was built to explore the effect of CASC2 on the growth of 131I-resistant PTC cells in vivo. Results showed that CASC2 expression was decreased in PTC tissues and cells, and low expression of CASC2 was associated with poor outcome of patients. CASC2 level was reduced in 131I-resistant cells. Knockdown of CASC2 inhibited 131I sensitivity in thyroid cancer cells. Overexpression of CASC2 enhanced 131I sensitivity in constructed resistant PTC cells. CASC2 was a decoy of miR-155, and CASC2-mediated promotion of 131I sensitivity was weakened by decreasing miR-155. Abundance of CASC2 inhibited the growth of 131I-resistant cells in vivo. As a conclusion, CASC2 increases 131I sensitivity in PTC by sponging miR-155, providing a novel target for the treatment of thyroid cancer patients with 131I resistance.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33135986

RESUMO

The mobility and bioavailability of heavy metals in sewage sludge are the major risks to utilize for agricultural application. In this study, the chemical speciation of Cu, Ni, Cr and Zn in Lanzhou municipal sewage sludge were investigated with the addition of a natural attapulgite. The influences of attapulgite amendment in sewage sludge on heavy metals stabilization were evaluated by investigating leaching procedure and sequential chemical extraction experiments. The sequential extraction procedure described by BCR was used in sludge to determine the distribution of heavy metal species. The addition of attapulgite evidently accelerated more reducible speciation of all metals to transform into residual speciation, and significantly reduced leaching content of metals and decreased the ecotoxicity accounted for the germination index values climbed rapidly with the increases attapulgite addition. Implication: This research developed a method to stabilize heavy metals in municipal sewage sludge with clay. The activated attapulgite improved the treatment of sewage sludge containing heavy metals, reduced the environmental risk of heavy metals. Implications Statement Attapulgite, a non-toxic and low-cost mineral absorbent, was firstly used in researching immobility of heavy metals in sewage sludge. The results suggested that attapulgite was able to decrease the leaching (soluble) metals significantly and promote transformation from available speciation to residual speciation of the heavy metals in sewage sludge. The alleviation of ecotoxicity of sewage sludge due to attapulgite amendment produced changes of sewage sludge application.

18.
Front Pharmacol ; 11: 565160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013403

RESUMO

Aims: Several recent reports have shown irisin protects the heart against ischemia/reperfusion injury. However, the effect of irisin on I/R injury in diabetic mice has not been described. The present study was designed to investigate the role of irisin in myocardial ischemia-reperfusion (MI/R) injury in diabetic mice. Methods: A mouse model of diabetes was established by feeding wild type or gene-manipulated adult male mice with a high-fat diet. All the mice received intraperitoneal injection of irisin or PBS. Thirty minutes after injection, mice were subjected to 30 min of myocardial ischemia followed by 3h (for cell apoptosis and protein determination), 24 h (for infarct size and cardiac function). Results: Knock-out of gene FNDC5 augmented MI/R injury in diabetic mice, while irisin treatment attenuated MI/R injury, improved cardiac function, cellular ATP biogenetics, mitochondria potential, and impaired mitochondrion-related cell death. More severely impaired AMPK pathway was observed in diabetic FNDC5-/- mice received MI/R. Knock-out of gene AMPK blocks the beneficial effects of irisin on MI/R injury, cardiac function, cellular ATP biogenetics, mitochondria potential, and mitochondrion-related cell death. Conclusions: Our present study demonstrated that irisin improves the mitochondria function and attenuates MI/R injury in diabetic mice through AMPK pathway.

19.
J Asian Nat Prod Res ; : 1-17, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33111547

RESUMO

1,8-Cineole (also known as eucalyptol) is mostly extracted from the essential oils of plants, which showed extensively pharmacological properties including anti-inflammatory and antioxidant mainly via the regulation on NF-κB and Nrf2, and was used for the treatment of respiratory diseases and cardiovascular, etc. Although various administration routes have been used in the application of 1.8-cineole, few formulations have been developed to improve its stability and bioavailability. This review retrospects the researches on the source, biological activities, mechanisms, and application of 1,8-cineole since 2000, which provides a view for the further studies on the application and formulations of 1,8-cineole.

20.
Exp Ther Med ; 20(6): 157, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33093895

RESUMO

Topical administration of triptolide (TP) is effective in the treatment of rheumatoid arthritis (RA), but it can also induce skin irritation. Previous studies have used data mining strategies to analyze the application of Tripterygium wilfordii in the treatment of RA and have shown that TP and ferulic acid (FA) can be used in combination due to their component compatibility. The aims of the present study were to investigate the mechanisms underlying the effects of TP treatment and to identify its effects on metabolism and oxidative damage in the skin. MTT assay results suggested that the HaCaT cell survival rate was significantly increased when the compatibility ratio of TP to FA was 1:100. Moreover, the combination of TP with FA (TP + FA) did not significantly affect the activities of the cytochrome P40 (CYP) enzymes CYP family 1 subfamily A member 2 (CYP1A2), CYP2E1 and CYP3A4, when used as a 'cocktail'. It was found that TP + FA significantly decreased the production levels of reactive oxygen species (ROS), superoxide dismutase and malondialdehyde in HaCaT cells, while significantly increasing levels of glutathione and catalase. In addition, TP + FA significantly increased nuclear factor erythroid 2-related factor 2 protein expression, compared with TP alone. Thus, the present results indicated that the underlying mechanism of TP + FA efficacy may be related to decreased ROS production level in HaCaT cells, increased production levels of key antioxidant factors and increased antioxidant activity of the epidermis, all of which were correlated with a protective effect against oxidative damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...