Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Int J Med Mushrooms ; 22(1): 55-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32463998

RESUMO

Cordyceps militaris is a type of food and medicinal species and is widely cultured in Asia. Substrate and strain are important factors for the production of fruiting bodies and bioactive components contents in fruiting bodies of C. militaris. This study aimed to select the excellent strains and suitable substrates by six strains of C. militaris cultivated on rice, wheat, and tussah (Antheraea pernyi) pupae. The results showed that the rice and wheat were suitable for fruiting body formation of strain CM3, with yields of 23.19 and 19.07 g per bottle, and biological efficiency of strain CM3 were 62.26% and 54.48%, respectively, which were significantly higher than other strains. Tussah pupae is suitable for fruiting body formation of strain CM9, with fruiting body length, yield, and biological efficiency of 5.57 cm, 6.80 g per each, and 291.70%, respectively, which were significantly higher than other strains. The content of adenosine in fruiting bodies of strain CM9 cultivated on tussah pupae was 2.62 mg g-1, followed by that of strain CM3 on rice of 2.51 mg g-1. The content of cordycepin in fruiting bodies of strain CM4 cultivated on wheat was 5.68 mg g-1, followed by that of strain CM9 on wheat of 5.41 mg g-1. To improve the product quality and the contents of bioactive components, C. militaris strains and substrates should both be considered, that is, different strains should be appropriate for different substrates.

2.
Environ Sci Technol ; 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32379431

RESUMO

The presence of sulfur dioxide (SO2) in the air is a global concern because of its severe environmental and public health impacts. Recent evidence from satellite observations shows rapid changes in the spatial distribution of global SO2 emissions, but such features are generally missing in global emission inventories that use a bottom-up method due to the lack of up-to-date information, especially in developing countries. Here, we rely on the latest data available on emission activities, control measures, and emission factors to estimate global SO2 emissions for the period 1960-2014 on a 0.1° × 0.1° spatial resolution. We design two counterfactual scenarios to isolate the contributions of emission activity growth and control measure deployment on historical SO2 emission changes. We find that activity growth has been the major factor driving global SO2 emission changes overall, but control measure deployment is playing an increasingly important role. With effective control measures deployed in developed countries, the predominant emission contributor has shifted from developed countries in the early 1960s (61%) to developing countries at present (83%). Developing countries show divergency in mitigation strategies and thus in SO2 emission trends. Stringent controls in China are driving the recent decline in global emissions. A further reduction in SO2 emissions would come from a large number of developing nations that currently lack effective SO2 emission controls.

3.
Environ Sci Technol ; 54(10): 6185-6193, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32315521

RESUMO

We show that arsenate can be readily reduced to arsenite on cell surfaces of common bacteria (E. coli or B. subtilis) or in aqueous dissolved extracellular polymeric substances (EPS) extracted from different microorganisms (E. coli, B. subtilis, P. chrysosporium, D. gigas, and a natural biofilm) in the absence of exogenous electron donors. The efficiency of arsenate reduction by E. coli after a 7-h incubation was only moderately reduced from 51.3% to 32.7% after knocking out the arsenic resistance genes (arsB and arsC). Most (>97%) of the reduced arsenite was present outside the bacterial cells, including for the E. coli blocked mutant lacking arsB and arsC. Thus, extracellular processes dominated arsenate reduction. Arsenate reduction was facilitated by removing EPS attached to E. coli or B. subtilis, which was attributed to enhanced access to reduced extracellular cytochromes. This highlights the role of EPS as a permeability barrier to arsenate reduction. Fourier-transform infrared (FTIR) combined with other chemical analyses implicated some low-molecular weight (<3 kDa) molecules as electron donors (reducing saccharides) and electron transfer mediators (quinones) in arsenate reduction by dissolved EPS alone. These results indicate that EPS act as both reducing agent and permeability barrier for access to reduced biomolecules in bacterial reduction of arsenate.

4.
Mol Med Rep ; 21(6): 2571-2579, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323773

RESUMO

Ocular angiogenesis is a major cause of severe vision loss, which can affect several parts of the eye, including the retina, choroid and cornea. Vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors have demonstrated great potential for treating ocular angiogenesis and SKLB1002 is a potent inhibitor of VEGF receptor 2 signaling. The present study investigated the effects of SKLB1002 administration on ocular angiogenesis. SKLB1002 administration did not show obvious cytotoxicity and tissue toxicity at the tested concentrations. In an alkali­burn corneal model, SKLB1002 administration significantly decreased the mean length and number of new corneal blood vessels. SKLB1002 administration significantly reduced endothelial cell proliferation, migration and tube formation in vitro. Mechanistically, SKLB1002 inhibited endothelial angiogenic functions by blocking the phosphorylation of ERK1/2, JNK and p38. Thus, selective inhibition of VEGFR­2 through SKLB1002 administration is a promising therapy for ocular angiogenesis.

5.
Leuk Lymphoma ; : 1-9, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268821

RESUMO

The inexpensive, well-tolerated, immunomodulatory agent leflunomide, used extensively for the treatment of rheumatoid arthritis, has been shown to produce significant activity against multiple myeloma (MM) in pre-clinical studies. We conducted a phase 1 study (clinicaltrials.gov: NCT02509052) of single agent leflunomide in patients with relapsed/refractory MM (≥3 prior therapies). At dose levels 1 and 2 (20 and 40 mg), no dose-limiting toxicities (DLTs) were observed. At dose level 3 (60 mg), one patient experienced elevated alanine aminotransferase; an additional three patients were enrolled at this dose level without further DLTs. Overall, toxicities were infrequent and manageable. Nine out of 11 patients achieved stable disease (SD), two subjects experiencing SD for nearly one year or longer. The tolerable safety profile of leflunomide, combined with a potential disease stabilization, is motivating future studies of leflunomide, in combination with other MM drugs, or as an approach to delay progression of smoldering MM.

6.
Chemosphere ; 252: 126496, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203782

RESUMO

The surface products have a significant influence on the reactivity of zero-valent iron-based materials. Although the enhancing effect of graphene on the reactivity of nanoscale zero-valent iron (NZVI)/graphene composites have been confirmed, the effect of graphene on the formation of surface products of NZVI is not well understood. In order to assess the effect of graphene on the structural of the outer iron oxide layers of NZVI, the NZVI was pre-oxidized by graphene oxide (ONZVI-GO). Compared with the NZVI oxidized by O2 (ONZVI-O2), ONZVI-GO was shown to be effective at NO3- removal with a high efficiency over a wide range of initial pH values. The results from characterization showed that GO could induce the formation of a tight iron oxide shell with dense spinel structures. The boron introduced during the preparation of NZVI was doped into iron oxides on the surface of ONZVI-GO. The B-O in adsorbed borate was transformed to B-B/B-Fe in the lattice structure of iron oxides, causing the formation of highly electron-deficient Lewis acid sites on the surface of ONZVI-GO, which could effectively gather NO3- and OH-, leading to the higher efficiency removal of NO3- than ONZVI-O2 over a wide range of initial pH values. This study provides new insight into the interaction between graphene and the surface species of NZVI.

7.
Environ Pollut ; 262: 114261, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32120261

RESUMO

Freshwater systems serve as important sources and transportation routes for marine microplastic pollution, and inadequate attention has been paid to this situation. Data on microplastic pollution of typical seagoing rivers in northern China are lacking. In the current study, we investigated the distribution and characteristics of microplastics in the main stream of the Haihe River, which flows through a metropolis with a high population density and level of industrialization and then flows into the Bohai Sea. The microplastic samples were collected by manta trawls with pore sizes of 333 µm, and the microplastic concentrations ranged from 0.69 to 74.95 items/m3. Fibers dominated in the surface water of the Haihe River; their shapes that were categorized as fibers, film, foam, fragments, and spheres, and contributed 17.4-86.7% of the total microplastics studied. The size distribution of the microplastics was concentrated in a range of 100-1000 µm, with 54.7% of the total sizes corresponding to the 333-µm trawl. Micro-Fourier transform infrared (µ-FT-IR) spectra showed that the main components were polyethylene, poly(ethylene-propylene) copolymer, and polypropylene. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) measurements revealed scratches, micropores, and cracks on the surfaces of the microplastics due to mechanical friction, chemical oxidation and degradation processes. The results of this study confirmed the high abundance and high diversity of microplastics in an urban river and indicated appreciable impacts from point-source inputs on the microplastic pollution, such as effluents from wastewater treatment plants (WWTPs).

8.
Environ Pollut ; 262: 114191, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32126436

RESUMO

The short-term health effects of ozone (O3) have highlighted the need for high-temporal-resolution O3 observations to accurately assess human exposure to O3. Here, we performed 20-s resolution observations of O3 precursors and meteorological factors to train a random forest model capable of accurately predicting O3 concentrations. Our model performed well with an average validated R2 of 0.997. Unlike in typical linear model frameworks, variable dependencies are not clearly modelled by random forest model. Thus, we conducted additional studies to provide insight into the photochemical and atmospheric dynamic processes driving variations in O3 concentrations. At nitrogen oxides (NOx) concentrations of 10-20 ppb, all the other O3 precursors were in states that increased the production of O3. Over a short timescale, nitrogen dioxide (NO2) can almost track each high-frequency variation in O3. Meteorological factors play a more important role than O3 precursors do in predicting O3 concentrations at a high temporal resolution; however, individual meteorological factors are not sufficient to track every high-frequency change in O3. Nevertheless, the sharp variations in O3 related to flow dynamics are often accompanied by steep temperature changes. Our results suggest that high-temporal-resolution observations, both ground-based and vertical profiles, are necessary for the accurate assessment of human exposure to O3 and the success and accountability of the emission control strategies for improving air quality.

9.
Environ Pollut ; 263(Pt B): 114390, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32203857

RESUMO

Urban air pollution features large spatial and temporal variations due to the high heterogeneity in emissions and ventilation conditions, which render the pollutant distributions in complex urban terrains difficult to measure. Current urban air pollution models are not able to simulate pollutant dispersion and distribution at a low computational cost and high resolution. To address this limitation, we have developed the urban terrain air pollution (UTAP) dispersion model to investigate, at a spatial resolution of 5 m and a temporal resolution of 1 h, the distribution of the local traffic-related NOx concentration at the pedestrian level in a 1 × 1 km2 area in Baoding, Hebei, China. The UTAP model was shown to be capable of capturing the local pollution variations in a complex urban terrain at a low computational cost. We found that the local traffic-related NOx concentration along or near major roads (10-200 µg m-3) was 1-2 orders of magnitude higher than that in places far from roads (0.1-10 µg m-3). Considering the background pollution, the NO and NO2 concentrations exhibited similar patterns with higher concentrations in street canyons and lower concentrations away from streets, while the O3 concentration exhibited the opposite behavior. Sixty percent of the NOx concentration likely stemmed from local traffic when the background pollution level was low. Both the background wind speed and direction substantially impacted the overall pollution level and concentration variations, with a low wind speed and direction perpendicular to the axes of most streets identified as unfavorable pollutant dispersion conditions. Our results revealed a large variability in the local traffic-related air pollutant concentration at the pedestrian level in the complex urban terrain, indicating that high-resolution computationally efficient models such as the UTAP model are required to accurately estimate the pollutant exposure of urban residents.

10.
Sci Total Environ ; 722: 137755, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32199359

RESUMO

PKU-FUEL is a recently developed gridded global emission inventory for multiple air pollutants that uses a bottom-up approach. The inventory includes data collected monthly for the period of 1960 to 2014 and at a 0.1° × 0.1° latitude/longitude resolution. In an effort to evaluate and improve this emission inventory, the PKU-FUEL Sulfur Dioxide (SO2) emission inventory was compared to other currently available and widely used global SO2 emission inventories constructed based on bottom-up and top-down approaches, including CEDS and OMI-HTAP. While PKU-FUEL is capable of capturing SO2 emissions across the globe and particularly in Asia, it misses 41 industrial point sources globally, accounting for 9.3% of Ozone Monitoring Instrument (OMI) remote sensing-measured industrial point sources. Most of these missing point sources are identified in Latin America, the Middle East (~60%), and some remote places. To improve the PKU-FUEL SO2 inventory, we applied OMI-measured emissions to sources missing from PKU-FUEL. GEOS-Chem model simulations were performed to evaluate original and improved PKU-FUEL SO2 inventories against measured SO2 concentrations across the world. Results were further compared to GEOS-Chem modeled SO2 concentrations using the CEDS inventory. We show that the modeled SO2 concentrations determined using both CEDS and improved PKU-FUEL inventories to a large extent corroborate sampled data and that the improved PKU-FUEL performs better for those regions lacking monitoring data.

11.
Sci Total Environ ; 717: 137261, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32065894

RESUMO

During a harvest period, a set of field samples, including ambient air (gaseous and particulate phases), dust fall, surface soil and peel-surrounding soil, and yellow carrot tissues (leaf, peel, and core), were collected in a vegetable bases near a large coking manufacturer in Shanxi Province, Northern China. Based on the determinations of the concentrations and compositions of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs), the statistical results determined by a factor analysis (FA), combined with the isomeric ratios of paired species and the local emission inventory, indicated that coal combustion and vehicular exhaust served as the main emission sources of PAHs in the local environment and in yellow carrot tissues and that the coking industry was a secondary source. In terms of the transport pathways of PAHs in the surrounding media and yellow carrot tissues, the simulation results of a structural equation model (SEM) showed that the PAHs in ambient air were closely associated with those in dust fall, and these in turn had a positive correlation with the PAHs in surface soil, due to air-soil exchange. Furthermore, the PAHs in yellow carrot leaf were mainly derived from those in dust fall via leaf surface absorption, while peel uptake played a dominant role in the accumulation of PAHs in the edible core of yellow carrot. This was different from the case of cabbage, which was characterized by the prevailing contribution from leaf surface absorption. The current study supplied additional evidence to explore the transport pathways of PAHs from environmental media to tissues of different vegetables (leafy vegetables and root vegetables). CAPSULE: A combination of structural equation modeling with factor analysis was employed to quantitatively identify the dominant transport pathways of PAHs among multiple surrounding media and the different tissues of yellow carrot.


Assuntos
Brassica , Daucus carota , China , Monitoramento Ambiental , Análise de Classes Latentes , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Verduras
12.
Environ Pollut ; 261: 114186, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32092627

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fossil fuels and forest or biomass burning. PAHs undergo long-range atmospheric transport, as evidenced by in situ observations across the Arctic. However, monitored atmospheric concentrations of PAHs indicate that ambient PAH levels in the Arctic do not follow the declining trend of worldwide anthropogenic PAH emissions since the 2000s, suggesting missing sources of PAHs in the Arctic or other places across the Northern Hemisphere. To trace origins and causes for the increasing trend of PAHs in the Arctic, the present study reconstructed PAH emissions from forest fires in the northern boreal forest derived by combining forest carbon stocks and MODIS burned area. We examined the statistical relationships of forest biomass, MODIS burned area, emission factors, and combustion efficiency with different PAH congeners. These relationships were then employed to construct PAH emission inventories from forest biomass burning. We show that for some PAH congeners, for example, benzo[a]pyrene (BaP)-the forest-fire-induced air emissions are almost one order of magnitude higher than previous emission inventories in the Arctic. A global-scale atmospheric chemistry model, GEOS-Chem, was used to simulate air concentrations of BaP, a representative PAH congener primarily emitted from biomass burning, and to quantify the response of BaP to wildfires in the northern boreal forest. The results showed that BaP emissions from wildfires across the northern boreal forest region played a significant role in the contamination and interannual fluctuations of BaP in Arctic air. A source-tagging technique was applied in tracking the origins of BaP pollution from different northern boreal forest regions. We also show that the response of BaP pollution at different Arctic monitoring sites depends on the intensity of human activities.

13.
Environ Sci Technol ; 54(6): 3343-3352, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091217

RESUMO

A variety of anthropogenic chemicals can disrupt the equilibrium of intrinsic biological metabolites in organisms, leading to metabolic disorders and an increased risk of metabolic syndromes. However, exposure to pollutants that induce metabolic disorders in wildlife as a cause of adverse effects is unknown. In this study, approximately 3108 compounds, including 11 groups of metabolites and 388 pollutants, were simultaneously identified in the blood of wild crucian carp (Carassius auratus) captured in three bays of Taihu Lake, China. A visualized network linking thousands of co-regulated metabolites was automatically produced for the screened signals. This comprehensive view of the differences in blood metabolite profiles in carp from the north and south bays showed that triglycerides (TGs) were the intrinsic molecules most affected by differing environmental pollution in each bay. The regional differences in metabolite profiles were linked to exposure to screened perfluorinated compounds that displayed corresponding regional differences in concentrations and effects on TGs in in vivo exposure tests. Perfluoroundecanoic acid (PFUnDA) was the key pollutant responsible for the variation in blood TGs in wild crucian carp, and exposure to PFUnDA resulted in extremely high biological activity on lipid deposition in the liver tissues of crucian carp at environmental levels.


Assuntos
Carpas , Doenças Metabólicas , Poluentes Químicos da Água , Animais , China , Lagos
14.
Environ Sci Technol ; 54(3): 1475-1483, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31770486

RESUMO

Phenylarsonic acid compounds could be oxidized by manganese oxides in surface soils, resulting in quick release of inorganic arsenic. This study investigated the structure-reactivity relationships in the adsorption and oxidative degradation of six substituted phenylarsonic acids on the surface of a major type of manganese oxides, birnessite (δ-MnO2), using batch experiments conducted under acidic to neutral conditions. The initial adsorption rates of the substituted phenylarsonic acids on δ-MnO2 decreased in the order of phenylarsonic acid (PAA) > 4-aminophenylarsonic acid (p-ASA) ≈ 2-aminophenylarsonic acid (2-APAA) > 4-hydroxyphenylarsonic acid (4-HPAA) > 2-nitrophenylarsonic acid (2-NPAA) > 4-hydroxy-3-nitrophenylarsonic acid (ROX), which could be attributed to steric hindrance of the substituents and the hydrophobicity of these compounds. The oxidation rates of these structural analogues by δ-MnO2 decreased in the order of p-ASA ≈ 2-APAA > 4-HPAA > ROX, while 2-NPAA and PAA were nonreactive because of the lack of electron-donating substituents on their aromatic rings. The redox reactivity of these compounds agrees well with the electron density at C1, which is determined by the types and position of the substituents on the aromatic ring. Although cleavage of the arsonic acid group from the aromatic ring was the predominant transformation pathway, a range of adduct products also formed through cross-coupling of the radicals and radical substitution. The contribution of radical coupling and substitution in overall degradation decreased in the order of p-ASA > 2-APAA > 4-HPAA > ROX, which results from the varying reactivity and steric hindrance of the substituents. These insights could help better understand and predict the fate of substituted phenylarsonic acids in manganese oxide-rich surface soils and the associated environmental risk of arsenic pollution.

15.
J Environ Manage ; 253: 109751, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675594

RESUMO

Using 2025 as the target year, we quantitatively assessed the reduction potentials of emissions of primary pollutants (including CO, HC, NOx, PM2.5 and PM10) under different vehicle control policies and the impacts of vehicle emission control policies in the BTH region on the regional PM2.5 concentration in winter and the surface ozone (O3) concentration in summer. Comparing the different scenarios, we found that (1) vehicle control policies will bring significant reductions in the emissions of primary pollutants. Among the individual policies, upgrading new vehicle emission standards and fuel quality in Beijing, Tianjin, and Hebei will be the most effective policy, with emission reductions of primary pollutants of 26.3%-54.7%, 38.0%-70.3% and 46.0%-81.6% in 2025, respectively; (2) for PM2.5 in winter, the Combined Scenario (CS) will lead to a reduction of 0.5-3.9 µg m-3 (3.5%-11.6%) for the monthly average PM2.5 concentrations in most areas. The monthly nitrate and ammonium concentrations would reduce by 5.8% and 5.3%, respectively, in the whole BTH region, indicating that vehicle emission control policies may play an important role in the reduction of PM2.5 concentrations in winter, especially for nitrate aerosols; and (3) for O3 concentrations in summer, vehicle emission control policies will lead to significant decreases. Under the CS scenario, the maximum reduction of monthly average O3 concentrations in the summer is approximately 3.6 ppb (5.9%). Most areas in the BTH region have a decrease of 15 ppb (7.5%) in peak values compared to the base scenario. However, in some VOC-sensitive areas in the BTH region, such as the southern urban areas, significant reductions in NOx may lead to increases in ozone concentrations. Our results highlight that season- and location-specific vehicle emission control measures are needed to alleviate ambient PM2.5 and O3 pollution effectively in this region due to the complex meteorological conditions and atmospheric chemical reactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , China , Monitoramento Ambiental , Material Particulado , Emissões de Veículos
16.
Environ Pollut ; 258: 113728, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31877468

RESUMO

The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH3) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. 31P nuclear magnetic resonance tests (31P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1-2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.


Assuntos
Material Particulado/análise , Fósforo/análise , Plantas/metabolismo , Solo/química
17.
Huan Jing Ke Xue ; 41(1): 377-384, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854940

RESUMO

Six deep sampling boreholes are used for studying the sources and vertical distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in an abandoned coking plant. The maximum depth of soil sampling ranged from 9.5-42 m. The present study analyzes the distribution characteristics and sources of PAHs in addition to the important factors affecting migration of PAHs in the unsaturated zone. Results showed that the maximum values of total PAHs range of 134.79-11266.81 mg·kg-1 at vertical depths ranging from 1-5 m. We found that 2+3 rings dominated total PAHs and that the highest content was Nap. Results also showed that the main source of PAH pollution was coal combustion. Coal tar pitch and different oils from deep processing of tar played an important role in PAH pollution. The gravel layer served as a good infiltration channel for pollutants, and the sand lens below 20 m depth became the main enrichment layer for PAHs through adsorption and interception. Oils and wastewater from discharge and leaching of chemicals contributed to the migration of PAHs through inter-miscibility and competitive adsorption, which led to deep soil pollution. Soil layers above 1 m depth were affected by artificial disturbance, rainfall leaching, and degradation, and the unsaturated zone below 30 m depth was affected by leaching from groundwater. Consequently, the ratio of low to high rings first increased before decreasing with increased depth of the unsaturated zone. The types of pollution sources, rock particle sizes, organic matter content, and hydrogeological conditions all affected the vertical distribution and migration of PAHs.

18.
J Hazard Mater ; 389: 121837, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31848091

RESUMO

TiO2 nanoparticles (nTiO2) have been widely used in many disciplines. However, whether they can be used to improve crops growth and nutritional quality is unknown. In this study, coriander (Coriandrum sativum L.) was treated with 0, 50, 100, 200, and 400 mg/L nTiO2 to evaluate their possible benefit to plant growth and nutritional quality under hydroponic conditions. Our observations showed that 50 mg/L nTiO2 only slightly but insignificantly increased the root and shoot fresh biomass by 13.2 % and 4.1 %, respectively, relative to the control. nTiO2 at this level promoted shoot K, Ca, Mg, Fe, Mn, Zn, and B accumulation, while spatial distribution of K, Ca, Fe, Mn, Cu and Zn in coriander leaves was not affected. No nTiO2 internalization or translocation to shoots occurred. 400 mg/L nTiO2 significantly reduced root fresh biomass by 15.8 % and water content by 6.7 %. Moreover, this high dose induced root cell membrane wrinkling, attributable to their aggregation and adsorption on root surfaces. At 100-400 mg/L, antioxidant defense systems (SOD, CAT and APX) in plant were triggered to alleviate oxidative stress. At an appropriate dose (50 mg/L), nTiO2 can improve nutrient quality of edible tissues without exerting toxicity to plant or posing health risk to consumers.

19.
Clin Cancer Res ; 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811017

RESUMO

PURPOSE: In classical Hodgkin lymphoma, the malignant Reed-Sternberg cells express the cell surface marker CD30. Brentuximab vedotin is an antibody-drug conjugate (ADC) that selectively delivers a potent cytotoxic agent, monomethyl auristatin E (MMAE), to CD30-positive cells. Although brentuximab vedotin elicits a high response rate (75%) in relapsed/refractory Hodgkin lymphoma, most patients who respond to brentuximab vedotin eventually develop resistance. PATIENTS AND METHODS: We developed two brentuximab vedotin-resistant Hodgkin lymphoma cell line models using a pulsatile approach and observed that resistance to brentuximab vedotin is associated with an upregulation of multidrug resistance-1 (MDR1). We then conducted a phase I trial combining brentuximab vedotin and cyclosporine A (CsA) in patients with relapsed/refractory Hodgkin lymphoma. RESULTS: Here, we show that competitive inhibition of MDR1 restored sensitivity to brentuximab vedotin in our brentuximab vedotin-resistant cell lines by increasing intracellular MMAE levels, and potentiated brentuximab vedotin activity in brentuximab vedotin-resistant Hodgkin lymphoma tumors in a human xenograft mouse model. In our phase I trial, the combination of brentuximab vedotin and CsA was tolerable and produced an overall and complete response rate of 75% and 42% in a population of patients who were nearly all refractory to brentuximab vedotin. CONCLUSIONS: This study may provide a new therapeutic strategy to combat brentuximab vedotin resistance in Hodgkin lymphoma. This is the first study reporting an effect of multidrug resistance modulation on the therapeutic activity of an ADC in humans. The expansion phase of the trial is ongoing and enrolling patients who are refractory to brentuximab vedotin to confirm clinical activity in this population with unmet need.

20.
Nat Commun ; 10(1): 5473, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784564

RESUMO

Although the physical effects of air pollution on humans are well documented, there may be even greater impacts on the emotional state and health. Surveys have traditionally been used to explore the impact of air pollution on people's subjective well-being (SWB). However, the survey techniques usually take long periods to properly match the air pollution characteristics from monitoring stations to each respondent's SWB at both disaggregated spatial and temporal levels. Here, we used air pollution data to simulate fixed-scene images and psychophysical process to examine the impact from only air pollution on SWB. Findings suggest that under the atmospheric conditions in Beijing, negative emotions occur when PM2.5 (particulate matter with a diameter less than 2.5 µm) increases to approximately 150 AQI (air quality index). The British observers have a stronger negative response under severe air pollution compared with Chinese observers. People from different social groups appear to have different sensitivities to SWB when air quality index exceeds approximately 200 AQI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA