Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Am J Med Genet A ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643321

RESUMO

Congenital heart disease (CHD) and hypertrophic cardiomyopathy (HCM) are common features in patients affected by RASopathies. The aim of this study was to assess genotype- phenotype correlations, focusing on the cardiac features and outcomes of interventions for cardiac conditions, in a single-center cohort of 116 patients with molecularly confirmed diagnosis of RASopathy, and compare these findings with previously published data. All enrolled patients underwent a comprehensive echocardiographic examination. Relevant information was also retrospectively collected through the analysis of clinical records. As expected, significant associations were found between PTPN11 mutations and pulmonary stenosis (both valvular and supravalvular) and pulmonary valve dysplasia, and between SOS1 mutations and valvular defects. Similarly, HRAS mutations were significantly associated with HCM. Potential associations between less prevalent mutations and cardiac defects were also observed, including RIT1 mutations and HCM, SOS2 mutations and septal defects, and SHOC2 mutations and septal and valve abnormalities. Patients with PTPN11 mutations were the most likely to require both a primary treatment (transcatheter or surgical) and surgical reintervention. Other cardiac anomalies less reported until recently in this population, such as isolated functional and structural mitral valve diseases, as well as a sigmoid-shaped interventricular septum in the absence of HCM, were also reported. In conclusion, our study confirms previous data but also provides new insights on cardiac involvement in RASopathies. Further research concerning genotype/phenotype associations in RASopathies could lead to a more rational approach to surgery and the consideration of drug therapy in patients at higher risk due to age, severity, anatomy, and comorbidities.

2.
Am J Hum Genet ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626534

RESUMO

Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs∗95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development.

3.
Hum Mol Genet ; 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508588

RESUMO

Germline activating mutations in HRAS cause Costello Syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via ROS-dependent AMPKα and p38 hyperactivation, occurs in CS, resulting in accelerated glycolysis, and increased fatty acid synthesis and storage as lipid droplets in primary fibroblasts. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.

4.
Genes (Basel) ; 12(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573299

RESUMO

OBJECTIVE: Cardiofaciocutaneous syndrome (CFCS) is a rare developmental disorder caused by upregulated signaling through the RAS-mitogen-activated protein kinase (MAPK) pathway, mostly resulting from de novo activating BRAF mutations. Children with CFCS are prone to epilepsy, which is a major life-threatening complication. The aim of our study was to define the natural history of epilepsy in this syndrome and exploring genotype-phenotype correlations. METHODS: We performed an observational study, including 34 patients with molecularly confirmed diagnosis (11 males, mean age: 15.8 years). The mean follow-up period was 9.2 years. For all patients, we performed neurological examination, cognitive assessment when possible, neuroimaging, electrophysiological assessment and systematic assessment of epilepsy features. Correlation analyses were performed, taking into account gender, age of seizure onset, EEG features, degree of cognitive deficits, type of mutation, presence of non-epileptic paroxysmal events and neuroimaging features. RESULTS: Epilepsy was documented in 64% of cases, a higher prevalence compared to previous reports. Patients were classified into three groups based on their electroclinical features, long-term outcome and response to therapy. A genotype-phenotype correlation linking the presence/severity of epilepsy to the nature of the structural/functional consequences of mutations was observed, providing a stratification based on genotype to improve the clinical management of these patients.

5.
Genes (Basel) ; 12(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34573388

RESUMO

In recent years, a rare form of autosomal recessive brachyolmia associated with amelogenesis imperfecta (AI) has been described as a novel nosologic entity. This disorder is characterized by skeletal dysplasia (e.g., platyspondyly, short trunk, scoliosis, broad ilia, elongated femoral necks with coxa valga) and severe enamel and dental anomalies. Pathogenic variants in the latent transforming growth factor-ß binding protein 3 (LTBP3) gene have been found implicated in the pathogenesis of this disorder. So far, biallelic pathogenic LTBP3 variants have been identified in less than 10 families. We here report a young boy born from consanguineous parents with a complex phenotype including skeletal dysplasia associated with aortic stenosis, hypertrophic cardiomyopathy, hypodontia and amelogenesis imperfecta caused by a previously unreported homozygous LTBP3 splice site variant. We also compare the genotypes and phenotypes of patients reported to date. This work provides further evidence that brachyolmia with amelogenesis imperfecta is a distinct nosologic entity and that variations in LTBP3 are involved in its pathogenesis.

6.
Genes (Basel) ; 12(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440382

RESUMO

Lissencephaly describes a group of conditions characterized by the absence of normal cerebral convolutions and abnormalities of cortical development. To date, at least 20 genes have been identified as involved in the pathogenesis of this condition. Variants in CEP85L, encoding a protein involved in the regulation of neuronal migration, have been recently described as causative of lissencephaly with a posterior-prevalent involvement of the cerebral cortex and an autosomal dominant pattern of inheritance. Here, we describe a 3-year-old boy with slightly delayed psychomotor development and mild dysmorphic features, including bitemporal narrowing, protruding ears with up-lifted lobes and posterior plagiocephaly. Brain MRI at birth identified type 1 lissencephaly, prevalently in the temporo-occipito-parietal regions of both hemispheres with "double-cortex" (Dobyns' 1-2 degree) periventricular band alterations. Whole-exome sequencing revealed a previously unreported de novo pathogenic variant in the CEP85L gene (NM_001042475.3:c.232+1del). Only 20 patients have been reported as carriers of pathogenic CEP85L variants to date. They show lissencephaly with prevalent posterior involvement, variable cognitive deficits and epilepsy. The present case report indicates the clinical variability associated with CEP85L variants that are not invariantly associated with severe phenotypes and poor outcome, and underscores the importance of including this gene in diagnostic panels for lissencephaly.

7.
Brain ; 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382076

RESUMO

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.

8.
Clin Epigenetics ; 13(1): 157, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380541

RESUMO

BACKGROUND: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. RESULTS: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the "episignature" associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. CONCLUSIONS: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches.

9.
Clin Genet ; 100(5): 563-572, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34346503

RESUMO

Neurofibromatosis 1 (NF1) is a disorder characterized by variable expressivity caused by loss-of-function variants in NF1, encoding neurofibromin, a protein negatively controlling RAS signaling. We evaluated whether concurrent variation in proteins functionally linked to neurofibromin contribute to the variable expressivity of NF1. Parallel sequencing of a RASopathy gene panel in 138 individuals with molecularly confirmed clinical diagnosis of NF1 identified missense variants in PTPN11, encoding SHP2, a positive regulator of RAS signaling, in four subjects from three unrelated families. Three subjects were heterozygous for a gain-of-function variant and showed a severe expression of NF1 (developmental delay, multiple cerebral neoplasms and peculiar cortical MRI findings), and features resembling Noonan syndrome (a RASopathy caused by activating variants in PTPN11). Conversely, the fourth subject, who showed an attenuated presentation, carried a previously unreported PTPN11 variant that had a hypomorphic behavior in vitro. Our findings document that functionally relevant PTPN11 variants occur in a small but significant proportion of subjects with NF1 modulating disease presentation, suggesting a model in which the clinical expression of pathogenic NF1 variants is modified by concomitant dysregulation of protein(s) functionally linked to neurofibromin. We also suggest targeting of SHP2 function as an approach to treat evolutive complications of NF1.

10.
Genes (Basel) ; 12(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356063

RESUMO

Recent advances in understanding the genetic causes and anatomic subtypes of cardiac defects have revealed new links between genetic etiology, pathogenetic mechanisms and cardiac phenotypes. Although the same genetic background can result in different cardiac phenotypes, and similar phenotypes can be caused by different genetic causes, researchers' effort to identify specific genotype-phenotype correlations remains crucial. In this review, we report on recent advances in the cardiac pathogenesis of three genetic diseases: Down syndrome, del22q11.2 deletion syndrome and Ellis-Van Creveld syndrome. In these conditions, the frequent and specific association with congenital heart defects and the recent characterization of the underlying molecular events contributing to pathogenesis provide significant examples of genotype-phenotype correlations. Defining these correlations is expected to improve diagnosis and patient stratification, and it has relevant implications for patient management and potential therapeutic options.

11.
Pathol Res Pract ; 225: 153553, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34329835

RESUMO

DICER1 syndrome is characterized by a unique combination of features and a growing list of associated rare tumors. Traditionally, gonadal or extra-gonadal teratomas have not been considered part of this spectrum, with only rare DICER1-related teratoid neoplasms recently reported. Besides, their methylation profiles remain elusive. We report two DICER1-associated malignancies involving the lumbar spine of a 22-year-old man (case 1) and the pelvic cavity of a 14-year-old girl (case 2). Both tumors exhibited teratoma-like features with a high-grade malignant somatic component, including rhabdomyosarcomatous elements for case 1 and a malignant neuroectodermal neoplasm with features of an embryonal tumor with multilayered rosettes (ETMR) for case 2. Both tumors showed strong SALL4 expression and H3K27me3 loss by immunohistochemistry. Next-generation sequencing studies confirmed biallelic DICER1 mutations with additional pathogenic missense mutations in KRAS (case 1) and CTNNB1 (case 2). The methylation profile of case 1 clustered with DICER1-associated sarcomas, whereas case 2 classified as an ETMR (albeit low raw and calibrated score). In conclusion, we report two DICER1-related malignancies with teratoma-like features, further expanding their morphologic spectrum and highlighting the multipotentiality of their presumed cell of origin. Notably, we describe the first ETMR identified outside the CNS with a documented DICER1 biallelic inactivation. Our findings also highlight the potential role of other molecular alterations such as KRAS and CTNNB1 mutations in defining the phenotype of embryonal and primitive DICER1-associated neoplasms, a notion that deserves further studies.

12.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199759

RESUMO

The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.


Assuntos
Alelos , Deficiência Intelectual/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Canais de Potássio/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Calcineurina/metabolismo , Feminino , Genoma Humano , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ionomicina/farmacologia , Masculino , Linhagem , Canais de Potássio/química , Irmãos , Xenopus laevis/metabolismo , Adulto Jovem
13.
Genes (Basel) ; 12(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202106

RESUMO

CHARGE syndrome (CS) is a rare genetic disease causing multiple anatomical defects and sensory impairment. Visual function is usually reported by caregivers and has never been described with a structured behavioral assessment. Our primary objective was to describe ocular abnormalities, visual function and genotype-ocular-phenotype correlation in CS. A prospective monocentric cohort study was performed on 14 children with CS carrying pathogenic CHD7 variants. All children underwent ophthalmological evaluation and structured behavioral assessment of visual function. The VISIOCHARGE questionnaire was administered to parents. Colobomas were present in 93% of patients. Genotype-phenotype correlation documented mitigated features in a subset of patients with intronic pathogenic variants predicted to affect transcript processing, and severe features in patients with frameshift/nonsense variants predicting protein truncation at the N-terminus. Abnormal visual function was present in all subjects, with different degrees of impairment. A significant correlation was found between visual function and age at assessment (p-value = 0.025). The present data are the first to characterize visual function in CS patients. They suggest that hypomorphic variants might be associated with milder features, and that visual function appears to be related to age. While studies with larger cohorts are required for confirmation, our data indicate that experience appears to influence everyday use of visual function more than ocular abnormalities do.

14.
Genes (Basel) ; 12(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202629

RESUMO

We report on two siblings suffering from different pathogenic conditions, born to consanguineous parents. A multigene panel for brain malformations and microcephaly identified the homozygous splicing variant NM_005886.3:c.1416+1del in the KATNB1 gene in the older sister. On the other hand, exome sequencing revealed the homozygous frameshift variant NM_005245.4:c.9729del in the FAT1 gene in the younger sister, who had a more complex phenotype: in addition to bilateral anophthalmia and heart defects, she showed a right split foot with 4 toes, 5 metacarpals, second toe duplication and preaxial polydactyly on the right hand. These features have been never reported before in patients with pathogenic FAT1 variants and support the role of this gene in the development of limb buds. Notably, each parent was heterozygous for both of these variants, which were ultra-rare and rare, respectively. This study raises awareness about the value of using whole exome/genome sequencing rather than targeted gene panels when testing affected offspring born to consanguineous couples. In this way, exomic data from the parents are also made available for carrier screening, to identify heterozygous pathogenetic and likely pathogenetic variants in genes responsible for other recessive conditions, which may pose a risk for subsequent pregnancies.

15.
Genes (Basel) ; 12(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206215

RESUMO

One of the recently described syndromes emerging from the massive study of cohorts of undiagnosed patients with autism spectrum disorders (ASD) and syndromic intellectual disability (ID) is White-Sutton syndrome (WHSUS) (MIM #616364), caused by variants in the POGZ gene (MIM *614787), located on the long arm of chromosome 1 (1q21.3). So far, more than 50 individuals have been reported worldwide, although phenotypic features and natural history have not been exhaustively characterized yet. The phenotypic spectrum of the WHSUS is broad and includes moderate to severe ID, microcephaly, variable cerebral malformations, short stature, brachydactyly, visual abnormalities, sensorineural hearing loss, hypotonia, sleep difficulties, autistic features, self-injurious behaviour, feeding difficulties, gastroesophageal reflux, and other less frequent features. Here, we report the case of a girl with microcephaly, brain malformations, developmental delay (DD), peripheral polyneuropathy, and adducted thumb-a remarkable clinical feature in the first years of life-and heterozygous for a previously unreported, de novo splicing variant in POGZ. This report contributes to strengthen and expand the knowledge of the clinical spectrum of WHSUS, pointing out the importance of less frequent clinical signs as diagnostic handles in suspecting this condition.

16.
Am J Med Genet A ; 185(10): 3153-3160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159694

RESUMO

Biallelic mutations in B3GALT6, coding for a galactosyltransferase involved in the synthesis of glycosaminoglycans (GAGs), have been associated with various clinical conditions, causing spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1 or SEMDJL Beighton type), Al-Gazali syndrome (ALGAZ), and a severe progeroid form of Ehlers-Danlos syndrome (EDSSPD2). In the 2017 Ehlers-Danlos syndrome (EDS) classification, Beta3GalT6-related disorders were grouped in the spondylodysplastic EDSs together with spondylodysplastic EDSs due to B4GALT7 and SLC39A13 mutations. Herein, we describe a patient with a previously unreported homozygous pathogenic B3GALT6 variant resulting in a complex phenotype more severe than spondyloepimetaphyseal dysplasia with joint laxity type 1, and having dural ectasia and aortic dilation as additionally associated features, further broadening the phenotypic spectrum of the Beta3GalT6-related syndromes. We also document the utility of repeating sequencing in patients with uninformative exomes, particularly when performed by using "first generations" enrichment capture methods.

17.
Genes (Basel) ; 12(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064633

RESUMO

Junctional epidermolysis bullosa (JEB) is a clinically and genetically heterogeneous skin fragility disorder frequently caused by mutations in genes encoding the epithelial laminin isoform, laminin-332. JEB patients also present mucosal involvement, including painful corneal lesions. Recurrent corneal abrasions may lead to corneal opacities and visual impairment. Current treatments are merely supportive. We report a novel JEB phenotype distinguished by the complete resolution of skin fragility in infancy and persistent ocular involvement with unremitting and painful corneal abrasions. Biallelic LAMB3 mutations c.3052-5C>G and c.3492_3493delCG were identified as the molecular basis for this phenotype, with one mutation being a hypomorphic splice variant that allows residual wild-type laminin-332 production. The reduced laminin-332 level was associated with impaired keratinocyte adhesion. Then, we also investigated the therapeutic power of a human amniotic membrane (AM) eyedrop preparation for corneal lesions. AM were isolated from placenta donors, according to a procedure preserving the AM biological characteristics as a tissue, and confirmed to contain laminin-332. We found that AM eyedrop preparation could restore keratinocyte adhesion in an in vitro assay. Of note, AM eyedrop administration to the patient resulted in long-lasting remission of her ocular manifestations. Our findings suggest that AM eyedrops could represent an effective, non-invasive, simple-to-handle treatment for corneal lesions in patients with JEB and possibly other EB forms.


Assuntos
Distrofias Hereditárias da Córnea/genética , Epidermólise Bolhosa Juncional/genética , Epitélio Corneano/patologia , Soluções Oftálmicas/uso terapêutico , Fenótipo , Âmnio/química , Adesão Celular , Moléculas de Adesão Celular/genética , Células Cultivadas , Pré-Escolar , Distrofias Hereditárias da Córnea/tratamento farmacológico , Distrofias Hereditárias da Córnea/patologia , Epidermólise Bolhosa Juncional/tratamento farmacológico , Epidermólise Bolhosa Juncional/patologia , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinócitos/fisiologia , Mutação , Soluções Oftálmicas/química , Soluções Oftálmicas/farmacologia , Pele/patologia
19.
Clin Genet ; 100(3): 268-279, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988253

RESUMO

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.

20.
Brain ; 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964137

RESUMO

Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...